scholarly journals Range, routing and kinetics of rod signaling in primate retina

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
William N Grimes ◽  
Jacob Baudin ◽  
Anthony W Azevedo ◽  
Fred Rieke

Stimulus- or context-dependent routing of neural signals through parallel pathways can permit flexible processing of diverse inputs. For example, work in mouse shows that rod photoreceptor signals are routed through several retinal pathways, each specialized for different light levels. This light-level-dependent routing of rod signals has been invoked to explain several human perceptual results, but it has not been tested in primate retina. Here, we show, surprisingly, that rod signals traverse the primate retina almost exclusively through a single pathway – the dedicated rod bipolar pathway. Identical experiments in mouse and primate reveal substantial differences in how rod signals traverse the retina. These results require reevaluating human perceptual results in terms of flexible computation within this single pathway. This includes a prominent speeding of rod signals with light level – which we show is inherited directly from the rod photoreceptors themselves rather than from different pathways with distinct kinetics.

2018 ◽  
Author(s):  
William N Grimes ◽  
Jacob Baudin ◽  
Anthony Azevedo ◽  
Fred Rieke

AbstractStimulus or context dependent routing of neural signals through parallel pathways can permit flexible processing of diverse inputs. For example, work in mouse shows that rod photoreceptor signals are routed through several retinal pathways, each specialized for different light levels. This light level-dependent routing of rod signals has been invoked to explain several human perceptual results, but it has not been tested in primate retina. Here we show, surprisingly, that rod signals traverse the primate retina almost exclusively through a single pathway, regardless of light level. Indeed, identical experiments in mouse and primate reveal large differences in how rod signals traverse the retina. These results require reevaluating human perceptual results in terms of flexible computation within this single pathway. This includes a prominent speeding of rod signals with light level – which we show is inherited directly from the rods photoreceptors themselves rather than from different pathways with different kinetics.


Open Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 190241
Author(s):  
Trevor D. Lamb ◽  
Timothy W. Kraft

We develop an improved quantitative model of mammalian rod phototransduction, and we apply it to the prediction of responses to bright flashes of light. We take account of the recently characterized dimeric nature of PDE6 activation, where the configuration of primary importance has two transducin molecules bound. We simulate the stochastic nature of the activation and shut-off reactions to generate the predicted kinetics of the active molecular species on the disc membrane surfaces, and then we integrate the differential equations for the downstream cytoplasmic reactions to obtain the predicted electrical responses. The simulated responses recover the qualitative form of bright-flash response families recorded from mammalian rod photoreceptors. Furthermore, they provide an accurate description of the relationship between the time spent in saturation and flash intensity, predicting the transition between first and second ‘dominant time constants’ to occur at an intensity around 5000 isomerizations per flash, when the rate of transducin activation is taken to be 1250 transducins s −1 per activated rhodopsin. This rate is consistent with estimates from light-scattering experiments, but is around fourfold higher than has typically been assumed in other studies. We conclude that our model and parameters provide a compelling description of rod photoreceptor bright-flash responses.


2019 ◽  
Vol 2019 (1) ◽  
pp. 320-325 ◽  
Author(s):  
Wenyu Bao ◽  
Minchen Wei

Great efforts have been made to develop color appearance models to predict color appearance of stimuli under various viewing conditions. CIECAM02, the most widely used color appearance model, and many other color appearance models were all developed based on corresponding color datasets, including LUTCHI data. Though the effect of adapting light level on color appearance, which is known as "Hunt Effect", is well known, most of the corresponding color datasets were collected within a limited range of light levels (i.e., below 700 cd/m2), which was much lower than that under daylight. A recent study investigating color preference of an artwork under various light levels from 20 to 15000 lx suggested that the existing color appearance models may not accurately characterize the color appearance of stimuli under extremely high light levels, based on the assumption that the same preference judgements were due to the same color appearance. This article reports a psychophysical study, which was designed to directly collect corresponding colors under two light levels— 100 and 3000 cd/m2 (i.e., ≈ 314 and 9420 lx). Human observers completed haploscopic color matching for four color stimuli (i.e., red, green, blue, and yellow) under the two light levels at 2700 or 6500 K. Though the Hunt Effect was supported by the results, CIECAM02 was found to have large errors under the extremely high light levels, especially when the CCT was low.


1999 ◽  
Vol 15 (5) ◽  
pp. 589-602 ◽  
Author(s):  
Vidya R. Athreya

Strangler fig density varied considerably in the evergreen forest of Karian Shola National Park, southern India, with 11 individuals ha−1 in an open trail area and 5.6 individuals ha−1 within the primary forest area. The index of light level was assessed by estimating the percentage of upper canopy cover along the longitudinal centre of ten, 500-m × 20-m plots in each of the two areas of the evergreen forest. However, the increase in strangler fig density was not correlated to light levels but was significantly correlated to the numbers of their main host species in the two areas. In Karian Shola National Park, strangler figs occurred predominantly on a few host species with 20 and 50% of strangler figs growing on Vitex altissima, Diospyros bourdilloni and Eugenia/Syzygium spp. in the primary forest and trail areas respectively. Both young and established strangler figs were recorded mainly on larger individuals of their host trees indicating that older host trees are likely to be more suitable for the germination and establishment of strangler figs. The reason for the above could be the higher incidence of humus-filled and decaying regions in the older host trees which would provide an assured supply of nutrients for the establishing strangler fig.


2019 ◽  
Vol 62 (1) ◽  
pp. 43-50
Author(s):  
Ellen Schagerström ◽  
Tiina Salo

Abstract Fucus radicans is an endemic habitat-forming brown macroalga in the Baltic Sea that commonly complements its sexual reproduction with asexual reproduction. Asexual reproduction in F. radicans takes place through formation of adventitious branches (hereafter fragments), but the exact mechanisms behind it remain unknown. We assessed experimentally the importance of two environmental factors determining the re-attachment success of F. radicans fragments. By combining different light conditions (daylength and irradiance; high or low light) and water temperature (+14°C and +4°C), we mimicked ambient light and temperature conditions of winter, spring/autumn and summer for F. radicans. Fragments were able to re-attach in all tested conditions. Temperature and light had an interactive impact on re-attachment: the combination of high temperature and high light level resulted in the highest re-attachment success, while light level had no effects on re-attachment success in cooler water temperature and the re-attachment success in high temperature under low light levels was very low. The results suggest that rhizoid formation, and thus re-attachment success, may depend on the net primary production (metabolic balance) of the fragment. However, whether the re-attachment and asexual reproduction success simply depends on photosynthetic capacity warrants further mechanistic studies. Understanding the mechanisms of asexual reproduction in F. radicans is important in order to assess the dispersal capacity of this foundation species.


2019 ◽  
Vol 6 (8) ◽  
pp. 190677 ◽  
Author(s):  
Carina Nebel ◽  
Petra Sumasgutner ◽  
Adrien Pajot ◽  
Arjun Amar

To avoid predation, many species rely on vision to detect predators and initiate an escape response. The ability to detect predators may be lower in darker light conditions or with darker backgrounds. For birds, however, this has never been experimentally tested. We test the hypothesis that the response time of avian prey (feral pigeon Columbia livia f. domestica ) to a simulated hawk attack (taxidermy mounted colour-polymorphic black sparrowhawk Accipiter melanoleucus ) will differ depending on light levels or background colour. We predict that response will be slower under darker conditions, which would translate into higher predation risk. The speed of response of prey in relation to light level or background colour may also interact with the colour of the predator, and this idea underpins a key hypothesis proposed for the maintenance of different colour morphs in polymorphic raptors. We therefore test whether the speed of reaction is influenced by the morph of the hawk (dark/light) in combination with light conditions (dull/bright), or background colours (black/white). We predict slowest responses to morphs under conditions that less contrast with the plumage of the hawk (e.g. light morph under bright light or white background). In support of our first hypothesis, pigeons reacted slower under duller light and with a black background. However, we found no support for the second hypothesis, with response times observed between the hawk-morphs being irrespective of light levels or background colour. Our findings experimentally confirm that birds detect avian predators less efficiently under darker conditions. These conditions, for example, might occur during early mornings or in dense forests, which could lead to changes in anti-predator behaviours. However, our results provide no support that different morphs may be maintained in a population due to differential selective advantages linked to improved hunting efficiencies in different conditions due to crypsis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Emily R. Sechrest ◽  
Joseph Murphy ◽  
Subhadip Senapati ◽  
Andrew F. X. Goldberg ◽  
Paul S.-H. Park ◽  
...  

Abstract Progressive rod-cone degeneration (PRCD) is a small protein localized to photoreceptor outer segment (OS) disc membranes. Several mutations in PRCD are linked to retinitis pigmentosa (RP) in canines and humans, and while recent studies have established that PRCD is required for high fidelity disc morphogenesis, its precise role in this process remains a mystery. To better understand the part which PRCD plays in disease progression as well as its contribution to photoreceptor OS disc morphogenesis, we generated a Prcd-KO animal model using CRISPR/Cas9. Loss of PRCD from the retina results in reduced visual function accompanied by slow rod photoreceptor degeneration. We observed a significant decrease in rhodopsin levels in Prcd-KO retina prior to photoreceptor degeneration. Furthermore, ultrastructural analysis demonstrates that rod photoreceptors lacking PRCD display disoriented and dysmorphic OS disc membranes. Strikingly, atomic force microscopy reveals that many disc membranes in Prcd-KO rod photoreceptor neurons are irregular, containing fewer rhodopsin molecules and decreased rhodopsin packing density compared to wild-type discs. This study strongly suggests an important role for PRCD in regulation of rhodopsin incorporation and packaging density into disc membranes, a process which, when dysregulated, likely gives rise to the visual defects observed in patients with PRCD-associated RP.


1977 ◽  
Vol 28 (4) ◽  
pp. 575 ◽  
Author(s):  
MS Rahman ◽  
JH Wilson ◽  
Y Aitken

The effects of two light levels (0.98 and 4.90 cal cm-2 hr-1) on rate of development and spikelet number per ear were studied in eight wheat cultivars grown under a 16 hr photoperiod at 20°C. The objective was to ascertain how light affects spikelet number. At the lower light level the durations of the vegetative, spikelet and ear elongation phases were greater, but the number of spikelets per ear, number of phytomers present at floral initiation, final leaf number, number of phytomers that were converted into spikelets, apex length at floral initiation and rate of spikelet initiation were smaller than at the higher light level. Responses to varying light level for a11 these parameters were similar for different cultivars, but the sizes of the responses differed. Within a given cultivar, an increase in spikelet number was associated with longer apices at floral initiation and a higher rate of spikelet initiation. It was concluded that these two factors are important determinants of spikelet number. ___________________ *Part I, Aust. J. Agric, Res., 28: 565 (1977).


1999 ◽  
Vol 50 (7) ◽  
pp. 1203 ◽  
Author(s):  
G. B. Taylor ◽  
C. K. Revell

Studies were made on the preconditioning stage (which produces latent soft seeds) and the final stage of seed softening in newly ripened seeds of the GEH72-1A accession of yellow serradella (Ornithopus compressus L.). Pods grown at Yelbeni, Western Australia, in 1996 were collected in December and placed on the soil surface or buried at a depth of 0.5 cm at a site near Perth. Other pods were subjected to a gradual diurnal temperature fluctuation of 60/15°C in darkness in a laboratory chamber. Pod samples were taken from the field at intervals from January to June in 1997, and over 336 days from the 60/15°C treatment. Pods were broken into segments and the number of soft seeds determined. Numbers of latent soft seeds were then determined by subjecting residual hard seeds to 7 gradual diurnal temperature cycles of 48/15°C in darkness and retesting for permeability. In a second experiment, seeds preconditioned at the soil surface until 3 March were subjected to a range of light levels in the field in March before testing for permeability. The time taken for seeds to precondition under a range of constant temperatures between 30° and 70°C was determined in a third experiment. Preconditioning commenced early in summer in both surface and buried seeds. All buried seeds that preconditioned completed the softening process to produce about 80% soft seeds, with most seeds softening in March when diurnal temperatures fluctuated between maxima of 45–50°C and minima of 10–20°C. Only 15% of the seeds at the soil surface softened so that relatively few preconditioned seeds completed the softening process. Preconditioning occurred more rapidly than did the completion of softening in the 60/15°C treatment, indicating that this temperature regime was above optimum for the final stage of softening. Reversal of the preconditioning process took place in the field as temperatures declined during May. Effects of reduced temperatures in causing this reversion were confirmed in the laboratory on seeds preconditioned at 60/15°C. The final stage of softening was inhibited in some seeds by light levels as low as 0.3% of daylight, and in all seeds at a light level between 5 and 25%. A close negative linear relation was obtained between the log of the time taken for 50% of seeds to precondition and the constant temperature treatment between 30°C and 70°C, with the rate of preconditioning doubling with every 5.2°C rise in temperature within this range. Although many seeds preconditioned at the soil surface, the main constraint to completion of the seed softening process during autumn was the inhibitory effect of light.


1984 ◽  
Vol 98 (5) ◽  
pp. 1788-1795 ◽  
Author(s):  
I Nir ◽  
D Cohen ◽  
D S Papermaster

Mature retinal rod photoreceptors sequester opsin in the disk and plasma membranes of the rod outer segment (ROS). Opsin is synthesized in the inner segment and is transferred to the outer segment along the connecting cilium that joins the two compartments. We have investigated early stages of retinal development during which the polarized distribution of opsin is established in the rod photoreceptor cell. Retinas were isolated from newborn rats, 3-21 d old, and incubated with affinity purified biotinyl-sheep anti-bovine opsin followed by avidin-ferritin. At early postnatal ages prior to the development of the ROS, opsin is labeled by antiopsin on the inner segment plasma membrane. At the fifth postnatal day, as ROS formation begins opsin was detected on the connecting cilium plasma membrane. However, the labeling density of the ciliary plasma membrane was not uniform: the proximal cilium was relatively unlabeled in comparison with the distal cilium and the ROS plasma membrane. In nearly mature rat retinas, opsin was no longer detected on the inner segment plasma membrane. A similar polarized distribution of opsin was also observed in adult human rod photoreceptor cells labeled with the same antibodies. These results suggest that some component(s) of the connecting cilium and its plasma membrane may participate in establishing and maintaining the polarized distribution of opsin.


Sign in / Sign up

Export Citation Format

Share Document