scholarly journals Probing the circumnuclear environment of NGC 1275 with High-Resolution X-ray spectroscopy

Author(s):  
Christopher S Reynolds ◽  
Robyn N Smith ◽  
Andrew C Fabian ◽  
Yasushi Fukazawa ◽  
Erin A Kara ◽  
...  

Abstract NGC 1275 is the Brightest Cluster Galaxy (BCG) in the Perseus cluster and hosts the active galactic nucleus (AGN) that is heating the central 100 kpc of the intracluster medium (ICM) atmosphere via a regulated feedback loop. Here we use a deep (490 ks) Cycle-19 Chandra High-Energy Transmission Grating (HETG) observation of NGC 1275 to study the anatomy of this AGN. The X-ray continuum is adequately described by an unabsorbed power-law with photon index Γ ≈ 1.9, creating strong tension with the detected column of molecular gas seen via HCN and HCO+ line absorption against the parsec-scale core/jet. This tension is resolved if we permit a composite X-ray source; allowing a column of $N_H\sim 8\times 10^{22}\hbox{${\rm \, cm}^{-2}\, $}$ to cover ∼15 per cent of the X-ray emitter does produce a significant improvement in the statistical quality of the spectral fit. We suggest that the dominant unabsorbed component corresponds to the accretion disk corona, and the sub-dominant X-ray component is the jet working surface and/or jet cocoon that is expanding into clumpy molecular gas. We suggest that this may be a common occurence in BCG-AGN. We conduct a search for photoionized absorbers/winds and fail to detect such a component, ruling out columns and ionization parameters often seen in many other Seyfert galaxies. We detect the 6.4 keV iron-Kα fluorescence line seen previously by XMM-Newton and Hitomi. We describe an analysis methodology which combines dispersive HETG spectra, non-dispersive microcalorimeter spectra, and sensitive XMM-Newton/EPIC spectra in order to constrain (sub)arcsec-scale extensions of the iron-Kα emission region.

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 219
Author(s):  
Elena Fedorova ◽  
B.I. Hnatyk ◽  
V.I. Zhdanov ◽  
A. Del Popolo

3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off typical rather for RQ AGN, probably due to the jet contamination. Separating the jet counterpart in the X-ray spectrum of 3C 111 from the primary nuclear counterpart can answer the question is this nucleus truly peculiar or this is a fake “peculiarity” due to a significant jet contribution. In view of this question, our aim is to estimate separately the accretion disk/corona and non-thermal jet emission in the 3C 111 X-ray spectra within different observational periods. To separate the disk/corona and jet contributions in total continuum, we use the idea that radio and X-ray spectra of jet emission can be described by a simple power-law model with the same photon index. This additional information allows us to derive rather accurate values of these contributions. In order to test these results, we also consider relations between the nuclear continuum and the line emission.


2000 ◽  
Vol 543 (2) ◽  
pp. L115-L118 ◽  
Author(s):  
Masao Sako ◽  
Steven M. Kahn ◽  
Frits Paerels ◽  
Duane A. Liedahl

1994 ◽  
Author(s):  
Salim Abdali ◽  
Finn E. Christensen ◽  
Herbert W. Schnopper ◽  
Thomas H. Markert ◽  
Daniel Dewey ◽  
...  

2020 ◽  
Vol 498 (2) ◽  
pp. 1911-1919
Author(s):  
Fang-Wu Lu ◽  
Quan-Gui Gao ◽  
Li Zhang

ABSTRACT 3C 58 is a pulsar wind nebula (PWN) that shows an interesting energy-dependent nebula extent and spatial variations of the photon index and surface brightness in the X-ray band. These observations provide useful information with which to study the spatially dependent radiative cooling of electrons and the energy-dependent transport mechanisms within the nebula. In this paper, the energy-dependent nebula extent and spatially resolved spectra of this PWN are investigated in the framework of a spatially dependent particle transport model. The observations of the nebula, including the photon spectral energy distribution, spatial variations of the X-ray spectrum, and measurements of the nebula extent, can be naturally explained in this model. Our results show that the energy-dependent nebula extent favours an advection–diffusion scenario with advection-dominated transport, and the variations of the nebula extent with energy in the X-ray band can be attributed to the cooling losses of high-energy electrons affected by synchrotron burn-off. Particle diffusion plays an important role in modifying the spatial variations of the photon index and surface brightness in the X-ray band. The radial extents of the nebula at radio, GeV and TeV energies are predicted by the model, indicating that the nebula extent of 3C 58 varies with energy in these bands. The analyses show that the dependence of the adiabatic cooling rate and synchrotron radiation on the spectral index of injected particles is important for changing the nebula extent at different energies.


2019 ◽  
Vol 623 ◽  
pp. A82 ◽  
Author(s):  
G. A. Kriss ◽  
N. Arav ◽  
D. Edmonds ◽  
J. Ely ◽  
J. S. Kaastra ◽  
...  

Aims. To elucidate the location, physical conditions, mass outflow rate, and kinetic luminosity of the outflow from the active nucleus of the Seyfert 1 galaxy Mrk 509, we used coordinated UV and X-ray spectral observations in 2012 to follow up our lengthier campaign conducted in 2009. Methods. We observed Mrk 509 with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) on 2012-09-03 and 2012-10-11 coordinated with X-ray observations using the High Energy Transmission Grating on the Chandra X-ray Observatory. Our far-ultraviolet spectra used grating G140L on COS to cover wavelengths from 920–2000 Å at a resolving power of ∼2000, and gratings G130M and G160M to cover 1160–1750 Å at a resolving power of ∼15, 000. Results. We detect variability in the blueshifted UV absorption lines on timescales spanning 3–12 years. The inferred densities in the absorbing gas are greater than log n cm−3 ∼ 3. For ionization parameters ranging over log U = −1.5 to −0.2, we constrain the distances of the absorbers to be closer than 220 pc to the active nucleus. Conclusions. The impact on the host galaxy appears to be confined to the nuclear region.


1994 ◽  
Vol 159 ◽  
pp. 380-380
Author(s):  
G. Matt ◽  
A.C. Fabian ◽  
R.R. Ross

The presence of iron lines and high energy excesses in the X-ray spectra of Seyfert galaxies has been firmly established by Ginga (e.g. Nandra & Pounds 1993 and references therein). These features are generally interpreted as signatures of the reprocessing of the primary X-rays by matter in the neighbourhood of the central black hole, probably distributed in an accretion disc (Lightman & White 1988, George & Fabian 1991, Matt, Perola & Piro 1991).


2019 ◽  
Vol 623 ◽  
pp. A115 ◽  
Author(s):  
L. Duvidovich ◽  
E. Giacani ◽  
G. Castelletti ◽  
A. Petriella ◽  
L. Supán

Aims. The goal of this paper is to detect synchrotron emission from the relic electrons of the crushed pulsar wind nebula (PWN) HESS J1825−137 and to investigate the origin of the γ-ray emission from HESS J1826−130. Methods. The study of HESS J1825−137 was carried out on the basis of new radio observations centred at the position of PSR J1826−1334 performed with the Karl G. Jansky Very Large Array at 1.4 GHz in configurations B and C. To investigate the nature of HESS J1826−130, we reprocessed unpublished archival data obtained with XMM-Newton. Results. The new radio continuum image towards PSR J1826−1334 reveals a bright radio source, with the pulsar located in its centre, which suggests that this feature could be the radio counterpart of the compact component of the PWN detected at high energy. The new 1.4 GHz radio data do not reveal emission with an extension comparable with that observed in γ-rays for the HESS J1825−137 source. On the other hand, the XMM-Newton study of the region including PSR J1826−1256 reveals an elongated non-thermal X-ray emitting nebula with the pulsar located in the northern border and a tail towards the peak of the very high energy source. The spectrum is characterized by a power law with a photon index going from 1.6 around the pulsar to 2.7 in the borders of the nebula, a behaviour consistent with synchrotron cooling of electrons. From our X-ray analysis we propose that HESS J1826−130 is likely produced by the PWN powered by PSR J1826−1256 via the inverse Compton mechanism.


1998 ◽  
Vol 188 ◽  
pp. 121-124 ◽  
Author(s):  
Toru Tanimori

In spite of the recent progress of high energy gamma-ray astronomy, there still remains quite unclear and important problem about the origin of cosmic rays. Supernova remnants (SNRs) are the favoured site for cosmic rays up to 1016 eV, as they satisfy the requirements such as an energy input rate. But direct supporting evidence is sparse. Recently intense non-thermal X-ray emission from the rims of the Type Ia SNR SN1006 (G327.6+14.6) has been observed by ASCA (Koyama et al. 1995)and ROSAT (Willingale et al. 1996), which is considered, by attributing the emission to synchrotron radiation, to be strong evidence of shock acceleration of high energy electrons up to ~100 TeV. If so, TeV gamma rays would also be expected from inverse Compton scattering (IC) of low energy photons (mostly attributable to the 2.7 K cosmic background photons) by these electrons. By assuming the magnetic field strength (B) in the emission region of the SNR, several theorists (Pohl 1996; Mastichiadis 1996; Mastichiadis & de Jager 1996; Yoshida & Yanagita 1997) calculated the expected spectra of TeV gamma rays using the observed radio/X-ray spectra. Observation of TeV gamma rays would thus provide not only the further direct evidence of the existence of very high energy electrons but also the another important information such as the strength of the magnetic field and diffusion coefficient of the shock acceleration. With this motivation, SN1006 was observed by the CANGAROO imaging air Cerenkov telescope in 1996 March and June, also 1997 March and April.


1998 ◽  
Vol 184 ◽  
pp. 479-480 ◽  
Author(s):  
Y. Terashima ◽  
H. Kunieda ◽  
P.J. Serlemitsos ◽  
A. Ptak

We present X-ray observations of LINERs with ASCA. We detected a hard point-like source of X-ray luminosity of 1040–1041 erg s−1 at the nucleus. Their hard X-ray continuum is well represented by power-law of photon index ~ 1.8. The X-ray to Hα luminosity ratio LX/LHα is quite similar to Seyfert galaxies and strongly support the presence of low luminosity AGNs.


Sign in / Sign up

Export Citation Format

Share Document