ascorbic acid biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 6)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Huang ◽  
Xin Chen ◽  
Aobing He ◽  
Zhibo Ma ◽  
Tianqi Gong ◽  
...  

Jujube (Ziziphus jujuba) was domesticated from wild jujube (Z. jujuba var. spinosa). Here, integrative physiological, metabolomic, and comparative proteomic analyses were performed to investigate the fruit expansion and fruit taste components in a jujube cultivar ‘Junzao’ and a wild jujube ‘Qingjiansuanzao’ with contrasting fruit size and taste. We revealed that the duration of cell division and expansion largely determined the final fruit size, while the intercellular space in the mesocarp dictated the ratio of mesocarp volume in mature fruits. The high levels of endogenous gibbereline3 (GA) and zeatin in the growing fruit of ‘Junzao’ were associated with their increased fruit expansion. Compared with ‘Junzao,’ wild jujube accumulated lower sugars and higher organic acids. Furthermore, several protein co-expression modules and important member proteins correlated with fruit expansion, sugar synthesis, and ascorbic acid metabolism were identified. Among them, GA20OX involved in GA biosynthesis was identified as a key protein regulating fruit expansion, whereas sucrose-6-phosphate synthase (SPS) and neutral invertase (NINV) were considered as key enzymes promoting sugar accumulation and as major factors regulating the ratio of sucrose to hexose in jujube fruits, respectively. Moreover, the increase of Nicotinamide adenine dinucleotide-Malate dehydrogenase (NAD-MDH) activity and protein abundance were associated with the malic acid accumulation, and the high accumulation of ascorbic acid in wild jujube was correlated with the elevated abundance of GalDH, ZjAPXs, and MDHAR1, which are involved in the ascorbic acid biosynthesis and recycling pathways. Overall, these results deepened the understanding of mechanisms regulating fruit expansion and sugar/acids metabolisms in jujube fruit.


2020 ◽  
Vol 131 ◽  
pp. 15-20
Author(s):  
Md. Summon Hossain ◽  
Roshan Kumar Dutta ◽  
Kambadur Muralidhar ◽  
Rinkoo Devi Gupta

Cosmetics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 58 ◽  
Author(s):  
Ravetti ◽  
Clemente ◽  
Brignone ◽  
Hergert ◽  
Allemandi ◽  
...  

Ascorbic acid (vitamin C) is a water-soluble vitamin and a recognized antioxidant drug that is used topically in dermatology to treat and prevent the changes associated with photoaging, as well as for the treatment of hyperpigmentation. Ascorbic acid has neutralizing properties of free radicals, being able to interact with superoxide, hydroxyl and free oxygen ions, preventing the inflammatory processes, carcinogens, and other processes that accelerate photoaging in the skin. Current research focuses on the search for stable compounds of ascorbic acid and new alternatives for administration in the dermis. Unlike plants and most animals, humans do not have the ability to synthesize our own ascorbic acid due to the deficiency of the enzyme L-gulono-gamma-lactone oxidase, which catalyzes the passage terminal in the ascorbic acid biosynthesis. To deal with this situation, humans obtain this vitamin from the diet and/or vitamin supplements, thus preventing the development of diseases and achieving general well-being. Ascorbic acid is involved in important metabolic functions and is vital for the growth and maintenance of healthy bones, teeth, gums, ligaments, and blood vessels. Ascorbic acid is a very unstable vitamin and is easily oxidized in aqueous solutions and cosmetic formulations. Ascorbic acid is extensively used as an ingredient in anti-aging cosmetic products, as sodium ascorbate or ascorbyl palmitate. This review discusses and describes the potential roles for ascorbic acid in skin health and their clinical applications (antioxidative, photoprotective, anti-aging, and anti-pigmentary effects) of topical ascorbic acid on the skin and main mechanisms of action. Considering the instability and difficulty in administering ascorbic acid, we also discuss the importance of several factors involved in the formulation and stabilization of their topical preparations in this review.


2019 ◽  
Vol 23 (3) ◽  
pp. 270-280 ◽  
Author(s):  
D. Y. Tyapkina ◽  
E. Z. Kochieva ◽  
M. A. Slugina

L-ascorbic acid (vitamin C) is a plant secondary metabolite that has a variety of functions both in plant tissues and in the human body. Plants are the main source of vitamin C in human nutrition, especially citrus, rose hip, tomato, strawberry, pepper, papaya, kiwi, and currant fruits. However, in spite of the biological significance of L-ascorbic acid, the pathways of its biosynthesis in plants were fully understood only in 2007 by the example of a model plant Arabidopsis thaliana. In the present review, the main biosynthetic pathways of vitamin C are described: the L-galactose pathway, L-gulose pathway, galacturonic and myo-inositol pathway. To date, the best studied is the L-galactose pathway (Smyrnoff–Wheeler pathway). Only for this pathway all the enzymes and the entire cascade of reactions have been described. For other pathways, only hypothetical metabolites are proposed and not all the catalyzing enzymes have been identified. The key genes participating in ascorbic acid biosynthesis and accumulation in fleshy fruits are highlighted. Among them are L-galactose pathway proteins (GDP-mannose phosphorylase (GMP, VTC1), GDP-D-mannose epimerase (GME), GDP-L-galactose phosphorylase (GGP, VTC2/VTC5), L-galactose-1-phosphate phosphatase (GPP/VTC4), L-galactose-1-dehydrogenase (GalDH), and L-galactono1,4-lactone dehydrogenase (GalLDH)); D-galacturonic pathway enzymes (NADPH-dependent D-galacturonate reductase (GalUR)); and proteins, controlling the recycling of ascorbic acid (dehydroascorbate reductase (DHAR1) and monodehydroascorbate reductase (MDHAR)). Until now, there is no clear and unequivocal evidence for the existence of one predominant pathway of vitamin C biosynthesis in fleshy fruits. For example, the L-galactose pathway is predominant in peach and kiwi fruits, whereas the D-galacturonic pathway seems to be the most essential in grape and strawberry fruits. However, in some plants, such as citrus and tomato fruits, there is a switch between different pathways during ripening. It is noted that the final ascorbic acid content in fruits depends not only on biosynthesis but also on the rate of its oxidation and recirculation.


Sign in / Sign up

Export Citation Format

Share Document