pyruvate synthase
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
YaFan Chan ◽  
Chia-Yu Chen ◽  
Chih-Ying Lu ◽  
Yung-Chi Tu ◽  
Kshitij Tandon ◽  
...  

Endozoicomonas, a core bacterial group in corals, may also be a coral symbiont. Endozoicomonas communities often decrease rapidly in corals under heat stress. However, how the bacteria respond to changes in temperature and coral host during heat stress is unknown. Here, we employed the cultivable, dominant species E. montiporae as a working organism to explore how Endozoicomonas responds to heat stress. We designed two experiments to clarify the extent to which E. montiporae is influenced by temperature and coral host. We detected differentially expressed protein (DEP) profiles in this bacterium at 31°C and 33°C compared to 25°C by tandem mass tags-based quantitative proteome analysis. Fifty DEPs, including many heat shock proteins, were detected when the temperature changed. The expression of antioxidant defense proteins and key pyruvate synthase proteins decreased, suggesting that E. montiporae were in a physiology of stress at 33°C. Furthermore, some proteins were differentially expressed because of the heat-stress-treated coral lysate specifically, suggesting that not only heat but also heat-induced host factors can affect the protein expression of the bacterium. This study provides an in-depth analysis of how the molecular mechanisms of Endozoicomonas are affected by heat stress and coral host.


FEBS Journal ◽  
2019 ◽  
Vol 286 (22) ◽  
pp. 4494-4508 ◽  
Author(s):  
Andreas Witt ◽  
Roberta Pozzi ◽  
Stephan Diesch ◽  
Oliver Hädicke ◽  
Hartmut Grammel

Microbiology ◽  
2010 ◽  
Vol 156 (1) ◽  
pp. 256-269 ◽  
Author(s):  
Ivan A. Berg ◽  
W. Hugo Ramos-Vera ◽  
Anna Petri ◽  
Harald Huber ◽  
Georg Fuchs

Two new autotrophic carbon fixation cycles have been recently described in Crenarchaeota. The 3-hydroxypropionate/4-hydroxybutyrate cycle using acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the carboxylating enzyme has been identified for (micro)aerobic members of the Sulfolobales. The dicarboxylate/4-hydroxybutyrate cycle using oxygen-sensitive pyruvate synthase and phosphoenolpyruvate carboxylase as carboxylating enzymes has been found in members of the anaerobic Desulfurococcales and Thermoproteales. However, Sulfolobales include anaerobic and Desulfurococcales aerobic autotrophic representatives, raising the question of which of the two cycles they use. We studied the mechanisms of autotrophic CO2 fixation in the strictly anaerobic Stygiolobus azoricus (Sulfolobales) and in the facultatively aerobic Pyrolobus fumarii (Desulfurococcales). The activities of all enzymes of the 3-hydroxypropionate/4-hydroxybutyrate cycle were found in the anaerobic S. azoricus. In contrast, the aerobic or denitrifying P. fumarii possesses all enzyme activities of the dicarboxylate/4-hydroxybutyrate cycle. We conclude that autotrophic Crenarchaeota use one of the two cycles, and that their distribution correlates with the 16S rRNA-based phylogeny of this group, rather than with the aerobic or anaerobic lifestyle.


2009 ◽  
Vol 191 (13) ◽  
pp. 4286-4297 ◽  
Author(s):  
W. Hugo Ramos-Vera ◽  
Ivan A. Berg ◽  
Georg Fuchs

ABSTRACT For Crenarchaea, two new autotrophic carbon fixation cycles were recently described. Sulfolobales use the 3-hydroxypropionate/4-hydroxybutyrate cycle, with acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the carboxylating enzyme. Ignicoccus hospitalis (Desulfurococcales) uses the dicarboxylate/4-hydroxybutyrate cycle, with pyruvate synthase and phosphoenolpyruvate carboxylase being responsible for CO2 fixation. In the two cycles, acetyl-CoA and two inorganic carbons are transformed to succinyl-CoA by different routes, whereas the regeneration of acetyl-CoA from succinyl-CoA proceeds via the same route. Thermoproteales would be an exception to this unifying concept, since for Thermoproteus neutrophilus, the reductive citric acid cycle was proposed as a carbon fixation mechanism. Here, evidence is presented for the operation of the dicarboxylate/4-hydroxybutyrate cycle in this archaeon. All required enzyme activities were detected in large amounts. The key enzymes of the cycle were strongly upregulated under autotrophic growth conditions, indicating their involvement in autotrophic CO2 fixation. The corresponding genes were identified in the genome. 14C-labeled 4-hydroxybutyrate was incorporated into the central building blocks in accordance with the key position of this compound in the cycle. Moreover, the results of previous 13C-labeling studies, which could be reconciled with a reductive citric acid cycle only when some assumptions were made, were perfectly in line with the new proposal. We conclude that the dicarboxylate/4-hydroxybutyrate cycle is operating in CO2 fixation in the strict anaerobic Thermoproteales as well as in Desulfurococcales.


2006 ◽  
Vol 362 (1486) ◽  
pp. 1887-1926 ◽  
Author(s):  
William Martin ◽  
Michael J Russell

A model for the origin of biochemistry at an alkaline hydrothermal vent has been developed that focuses on the acetyl-CoA (Wood–Ljungdahl) pathway of CO 2 fixation and central intermediary metabolism leading to the synthesis of the constituents of purines and pyrimidines. The idea that acetogenesis and methanogenesis were the ancestral forms of energy metabolism among the first free-living eubacteria and archaebacteria, respectively, stands in the foreground. The synthesis of formyl pterins, which are essential intermediates of the Wood–Ljungdahl pathway and purine biosynthesis, is found to confront early metabolic systems with steep bioenergetic demands that would appear to link some, but not all, steps of CO 2 reduction to geochemical processes in or on the Earth's crust. Inorganically catalysed prebiotic analogues of the core biochemical reactions involved in pterin-dependent methyl synthesis of the modern acetyl-CoA pathway are considered. The following compounds appear as probable candidates for central involvement in prebiotic chemistry: metal sulphides, formate, carbon monoxide, methyl sulphide, acetate, formyl phosphate, carboxy phosphate, carbamate, carbamoyl phosphate, acetyl thioesters, acetyl phosphate, possibly carbonyl sulphide and eventually pterins. Carbon might have entered early metabolism via reactions hardly different from those in the modern Wood–Ljungdahl pathway, the pyruvate synthase reaction and the incomplete reverse citric acid cycle. The key energy-rich intermediates were perhaps acetyl thioesters, with acetyl phosphate possibly serving as the universal metabolic energy currency prior to the origin of genes. Nitrogen might have entered metabolism as geochemical NH 3 via two routes: the synthesis of carbamoyl phosphate and reductive transaminations of α-keto acids. Together with intermediates of methyl synthesis, these two routes of nitrogen assimilation would directly supply all intermediates of modern purine and pyrimidine biosynthesis. Thermodynamic considerations related to formyl pterin synthesis suggest that the ability to harness a naturally pre-existing proton gradient at the vent–ocean interface via an ATPase is older than the ability to generate a proton gradient with chemistry that is specified by genes.


2004 ◽  
Vol 186 (23) ◽  
pp. 8044-8057 ◽  
Author(s):  
Sirko Schmeling ◽  
Ariun Narmandakh ◽  
Oliver Schmitt ◽  
Nasser Gad'on ◽  
Karola Schühle ◽  
...  

ABSTRACT The anaerobic metabolism of phenol in the beta-proteobacterium Thauera aromatica proceeds via para-carboxylation of phenol (biological Kolbe-Schmitt carboxylation). In the first step, phenol is converted to phenylphosphate which is then carboxylated to 4-hydroxybenzoate in the second step. Phenylphosphate formation is catalyzed by the novel enzyme phenylphosphate synthase, which was studied. Phenylphosphate synthase consists of three proteins whose genes are located adjacent to each other on the phenol operon and were overproduced in Escherichia coli. The promoter region and operon structure of the phenol gene cluster were investigated. Protein 1 (70 kDa) resembles the central part of classical phosphoenolpyruvate synthase which contains a conserved histidine residue. It catalyzes the exchange of free [14C]phenol and the phenol moiety of phenylphosphate but not the phosphorylation of phenol. Phosphorylation of phenol requires protein 1, MgATP, and another protein, protein 2 (40 kDa), which resembles the N-terminal part of phosphoenol pyruvate synthase. Proteins 1 and 2 catalyze the following reaction: phenol + MgATP + H2O→phenylphosphate + MgAMP + orthophosphate. The phosphoryl group in phenylphosphate is derived from the β-phosphate group of ATP. The free energy of ATP hydrolysis obviously favors the trapping of phenol (Km , 0.04 mM), even at a low ambient substrate concentration. The reaction is stimulated severalfold by another protein, protein 3 (24 kDa), which contains two cystathionine-β-synthase domains of unknown function but does not show significant overall similarity to known proteins. The molecular and catalytic features of phenylphosphate synthase resemble those of phosphoenolpyruvate synthase, albeit with interesting modifications.


1993 ◽  
pp. 333-338
Author(s):  
Dietmar Schomburg ◽  
Margit Salzmann ◽  
Dörte Stephan
Keyword(s):  

1989 ◽  
Vol 21 (3) ◽  
pp. 245-259 ◽  
Author(s):  
Neil M. Dixon ◽  
Eurig W. James ◽  
Robert W. Lovitt ◽  
Douglas B. Kell

1989 ◽  
Vol 275 (3) ◽  
pp. 245-259
Author(s):  
Neil M. Dixon ◽  
Eurig W. James ◽  
Robert W. Lovitt ◽  
Douglas B. Kell

Sign in / Sign up

Export Citation Format

Share Document