phosphoenolpyruvate synthase
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 1)

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Claudia Durall ◽  
Pia Lindberg ◽  
Jianping Yu ◽  
Peter Lindblad

Abstract Background Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobacterium Synechocystis PCC 6803 with increased phosphoenolpyruvate carboxylase (PEPc) levels. The resulting engineered strain (CD-P) showed significantly increased ethylene production (10.5 ± 3.1 µg mL−1 OD−1 day−1) compared to the control strain (6.4 ± 1.4 µg mL−1 OD−1 day−1). Interestingly, extra copies of the native pepc or the heterologous expression of PEPc from the cyanobacterium Synechococcus PCC 7002 (Synechococcus) in the CD-P, increased ethylene production (19.2 ± 1.3 and 18.3 ± 3.3 µg mL−1 OD−1 day−1, respectively) when the cells were treated with the acetyl-CoA carboxylase inhibitor, cycloxydim. A heterologous expression of phosphoenolpyruvate synthase (PPSA) from Synechococcus in the CD-P also increased ethylene production (16.77 ± 4.48 µg mL−1 OD−1 day−1) showing differences in the regulation of the native and the PPSA from Synechococcus in Synechocystis. Conclusions This work demonstrates that genetic rewiring of cyanobacterial central carbon metabolism can enhance carbon supply to the TCA cycle and thereby further increase ethylene production.


2008 ◽  
Vol 74 (21) ◽  
pp. 6649-6655 ◽  
Author(s):  
Yihui Zhu ◽  
Mark A. Eiteman ◽  
Ronni Altman ◽  
Elliot Altman

ABSTRACT We report pyruvate formation in Escherichia coli strain ALS929 containing mutations in the aceEF, pfl, poxB, pps, and ldhA genes which encode, respectively, the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, phosphoenolpyruvate synthase, and lactate dehydrogenase. The glycolytic rate and pyruvate productivity were compared using glucose-, acetate-, nitrogen-, or phosphorus-limited chemostats at a growth rate of 0.15 h−1. Of these four nutrient limitation conditions, growth under acetate limitation resulted in the highest glycolytic flux (1.60 g/g � h), pyruvate formation rate (1.11 g/g � h), and pyruvate yield (0.70 g/g). Additional mutations in atpFH and arcA (strain ALS1059) further elevated the steady-state glycolytic flux to 2.38 g/g � h in an acetate-limited chemostat, with heterologous NADH oxidase expression causing only modest additional improvement. A fed-batch process with strain ALS1059 using defined medium with 5 mM betaine as osmoprotectant and an exponential feeding rate of 0.15 h−1 achieved 90 g/liter pyruvate, with an overall productivity of 2.1 g/liter � h and yield of 0.68 g/g.


2006 ◽  
Vol 73 (2) ◽  
pp. 456-464 ◽  
Author(s):  
Y. Zhu ◽  
M. A. Eiteman ◽  
K. DeWitt ◽  
E. Altman

ABSTRACT We report the homofermentative production of lactate in Escherichia coli strains containing mutations in the aceEF, pfl, poxB, and pps genes, which encode the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, and phosphoenolpyruvate synthase, respectively. The process uses a defined medium and two distinct fermentation phases: aerobic growth to an optical density of about 30, followed by nongrowth, anaerobic production. Strain YYC202 (aceEF pfl poxB pps) generated 90 g/liter lactate in 16 h during the anaerobic phase (with a yield of 0.95 g/g and a productivity of 5.6 g/liter · h). Ca(OH)2 was found to be superior to NaOH for pH control, and interestingly, significant succinate also accumulated (over 7 g/liter) despite the use of N2 for maintaining anaerobic conditions. Strain ALS961 (YYC202 ppc) prevented succinate accumulation, but growth was very poor. Strain ALS974 (YYC202 frdABCD) reduced succinate formation by 70% to less than 3 g/liter. 13C nuclear magnetic resonance analysis using uniformly labeled acetate demonstrated that succinate formation by ALS974 was biochemically derived from acetate in the medium. The absence of uniformly labeled succinate, however, demonstrated that glyoxylate did not reenter the tricarboxylic acid cycle via oxaloacetate. By minimizing the residual acetate at the time that the production phase commenced, the process with ALS974 achieved 138 g/liter lactate (1.55 M, 97% of the carbon products), with a yield of 0.99 g/g and a productivity of 6.3 g/liter · h during the anaerobic phase.


2004 ◽  
Vol 186 (23) ◽  
pp. 8044-8057 ◽  
Author(s):  
Sirko Schmeling ◽  
Ariun Narmandakh ◽  
Oliver Schmitt ◽  
Nasser Gad'on ◽  
Karola Schühle ◽  
...  

ABSTRACT The anaerobic metabolism of phenol in the beta-proteobacterium Thauera aromatica proceeds via para-carboxylation of phenol (biological Kolbe-Schmitt carboxylation). In the first step, phenol is converted to phenylphosphate which is then carboxylated to 4-hydroxybenzoate in the second step. Phenylphosphate formation is catalyzed by the novel enzyme phenylphosphate synthase, which was studied. Phenylphosphate synthase consists of three proteins whose genes are located adjacent to each other on the phenol operon and were overproduced in Escherichia coli. The promoter region and operon structure of the phenol gene cluster were investigated. Protein 1 (70 kDa) resembles the central part of classical phosphoenolpyruvate synthase which contains a conserved histidine residue. It catalyzes the exchange of free [14C]phenol and the phenol moiety of phenylphosphate but not the phosphorylation of phenol. Phosphorylation of phenol requires protein 1, MgATP, and another protein, protein 2 (40 kDa), which resembles the N-terminal part of phosphoenol pyruvate synthase. Proteins 1 and 2 catalyze the following reaction: phenol + MgATP + H2O→phenylphosphate + MgAMP + orthophosphate. The phosphoryl group in phenylphosphate is derived from the β-phosphate group of ATP. The free energy of ATP hydrolysis obviously favors the trapping of phenol (Km , 0.04 mM), even at a low ambient substrate concentration. The reaction is stimulated severalfold by another protein, protein 3 (24 kDa), which contains two cystathionine-β-synthase domains of unknown function but does not show significant overall similarity to known proteins. The molecular and catalytic features of phenylphosphate synthase resemble those of phosphoenolpyruvate synthase, albeit with interesting modifications.


2000 ◽  
Vol 182 (24) ◽  
pp. 6892-6899 ◽  
Author(s):  
Michel E. van der Rest ◽  
Christian Frank ◽  
Douwe Molenaar

ABSTRACT Oxidation of malate to oxaloacetate in Escherichia colican be catalyzed by two enzymes: the well-known NAD-dependent malate dehydrogenase (MDH; EC 1.1.1.37 ) and the membrane-associated malate:quinone-oxidoreductase (MQO; EC 1.1.99.16 ), encoded by the genemqo (previously called yojH). Expression of themqo gene and, consequently, MQO activity are regulated by carbon and energy source for growth. In batch cultures, MQO activity was highest during exponential growth and decreased sharply after onset of the stationary phase. Experiments with the β-galactosidase reporter fused to the promoter of the mqo gene indicate that its transcription is regulated by the ArcA-ArcB two-component system. In contrast to earlier reports, MDH did not repressmqo expression. On the contrary, MQO and MDH are active at the same time in E. coli. For Corynebacterium glutamicum, it was found that MQO is the principal enzyme catalyzing the oxidation of malate to oxaloacetate. These observations justified a reinvestigation of the roles of MDH and MQO in the citric acid cycle of E. coli. In this organism, a defined deletion of the mdh gene led to severely decreased rates of growth on several substrates. Deletion of the mqo gene did not produce a distinguishable effect on the growth rate, nor did it affect the fitness of the organism in competition with the wild type. To investigate whether in an mqo mutant the conversion of malate to oxaloacetate could have been taken over by a bypass route via malic enzyme, phosphoenolpyruvate synthase, and phosphenolpyruvate carboxylase, deletion mutants of the malic enzyme genessfcA and b2463 (coding for EC 1.1.1.38 and EC1.1.1.40 , respectively) and of the phosphoenolpyruvate synthase (EC2.7.9.2 ) gene pps were created. They were introduced separately or together with the deletion of mqo. These studies did not reveal a significant role for MQO in malate oxidation in wild-type E. coli. However, comparing growth of themdh single mutant to that of the double mutant containingmdh and mqo deletions did indicate that MQO partly takes over the function of MDH in an mdh mutant.


Sign in / Sign up

Export Citation Format

Share Document