peritectic melting
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Gabriela Schneider-Rauber ◽  
Mihails Arhangelskis ◽  
Andrew D. Bond ◽  
Raimundo Ho ◽  
Nandkishor Nere ◽  
...  

Stress-induced transformations of labile multicomponent organic solids may have a significant impact on industrial manufacturing processes, for example, in the pharmaceutical field. This study considers 15 carbamazepine (CBZ) multicomponent crystal forms, with the aim of identifying the structural and surface features that drive the outcome of thermal stress-induced transformations. Analysis of the crystal structures, and specifically the degree of similarity with the CBZ polymorphs produced by desolvation-like processes, identifies some degree of correlation between structural features. In particular, mutually exclusive supramolecular motifs identified previously within CBZ crystal structures are frequently (but not invariably) preserved, and thereby provide some indication of the anticipated polymorphic outcome. This is broadly consistent with established models relating reactant and product crystal phases. Some of the CBZ multicomponent materials show surface modifications indicative of the formation of a liquid intermediate phase, which provides an alternative dissolution/recrystallization mechanism and different polymorphic outcomes compared to the direct solid–solid transformation pathway. Other cases show intermediates of varying stoichiometry and instances of chemical decomposition. Hence, the product of thermal decomposition is frequently affected by the physical properties of the coformer, such as boiling point and reactivity. This can lead to a dependence on experimental conditions, especially when events such as recrystallization, chemical decomposition of the coformer, solubilization and peritectic melting occur concomitantly. This study highlights that the overall picture is complex, even within this series of closely related materials.


2020 ◽  
Author(s):  
Manuel Pimenta Silva ◽  
Peter Ulmer ◽  
Othmar Müntener

<p>In the southern part of the Adamello Batholith (43-33 Ma; Schaltegger et al., 2019) in Northern Italy (Re di Castello superunit), we identified a multi-generational dyke suite with “exotic” chemical compositions intruding quartz-dioritic units surrounding a gabbroic complex. These dykes are characterised by SiO<sub>2</sub> contents between 43 and 46 wt.%, high Al<sub>2</sub>O<sub>3</sub> (20-21 wt.%), and low MgO and Ni (below 6.5 wt.% and 40 μg/g, respectively), displaying a nepheline-normative character. Furthermore, they exhibit positive Sr and Ba anomalies. These chemical features exclude a possible primitive character or derivation from a typical calc-alkaline liquid line of descent, as identified for the Adamello Massif (Ulmer et al, 2018). The primocrystic cargo of these dikes (clinopyroxene, anorthitic plagioclase, and low-Si, high-Na pargasitic amphibole) displays striking similarities with cumulate crystals of the contiguous Blumone amphibole gabbroic cumulate, inferring mechanical interaction of these exotic liquids with and/or derivation from the cumulate complex. Amphibole-plagioclase equilibration temperatures of the dikes (875 to 775ºC) are consistent with thermal equilibration with the surrounding quartz-dioritic mush. Sharp contacts and dyke fragmentation are also observed and are thermally congruent with the ductile-brittle transition of a quartz-dioritic to tonalitic mush (Marxer & Ulmer, 2019).</p><p>Simple mass balance calculations modelling of the peritectic melting of pargasitic amphibole and high-An plagioclase (major mineral phases of the contiguous amphibole gabbroic cumulates) with simultaneous crystallisation of low-Al clinopyroxene reveal that melt compositions similar to these dykes can be achieved with amphibole-plagioclase proportions ranging between 65:35 and 50:50. To verify if peritectic cumulate remelting represents a possible generation mechanism of these dykes we performed<span>  </span>experiments at 0.2 GPa.</p><p>Established phase equilibria of these dyke compositions reveal a lack of near-liquidus olivine, which is a rare phase in gabbroic complex. This is consistent with preliminary experimental results on cumulate melting, where olivine is also absent at high temperatures (> 1075ºC). These observations further disprove the petrogenesis of these liquids via a calc-alkaline liquid line of descent, where mafic magmas would be early saturated in olivine at low pressure further supporting their generation by local remelting of amphibole-plagioclase dominated mafic cumulates.Geochemical as well as experimental results both strongly point towards the petrogenesis of these nepheline-normative, high-Al, low-Mg picrobasalts by low pressure peritectic melting of a pargasite-anorthite cumulate assemblage in an active magmatic system.</p><p> </p><p>Marxer, F. & Ulmer, P. <em>Contrib Mineral Petr.</em> <strong>174(10)</strong>, 84 (2019).</p><p>Schaltegger, U. <em>et al. J Petrol. </em><strong>60(4)</strong>, 701-722 (2019).</p><p>Ulmer, P. <em>et al. J. Petrol.</em> <strong>59(1)</strong>, 11-58 (2018).</p>


2020 ◽  
Vol 21 (1) ◽  
pp. 33
Author(s):  
Made Sumadiyasa ◽  
I Putu Suardana ◽  
Nyoman Wendri

The sintering temperature is played a vital role in the evolution of phase structure, microstructure, and the properties of the superconductor. In this study, the Gd0.9La0.1Ba1.95Sr0.05Cu3O7-d phase compound has been synthesized by the wet method using HNO3 as a solvent. The samples were divided into two groups. The first sample was calcined at 400 °C for 2 hours + 500 °C for 2 hours + 600 °C for 6 hours. The second sample treated by the same process and then continued by heating at 900 °C for 15 minutes. The effect of the calcination temperature for the synthesis of Gd0.9La0.1Ba1.95Sr0.05Cu3O7-d bulks was investigated using the DTA-TG method. The results showed that the optimum reaction temperature for the formation of Gd0.9La0.1Ba1.95Sr0.05Cu3O7-d phase was 938 °C. The additional heating temperature e.g. 900 °C for 15 minutes on the calcination process can reduce the optimum formation temperature of Gd0.9La0.1Ba1.95Sr0.05Cu3O7-d compounds by 20 °C. The peritectic melting reaction temperatures of the sample without the addition of heating and with the addition of heating at temperature 900 °C for 15 minutes are 1032°C and 1035°C, respectively. The melting temperatures of both samples are 1164 °C and 1200 °C.


2013 ◽  
Vol 369 ◽  
pp. 8-13 ◽  
Author(s):  
Yuan Y. Chen ◽  
Chen Y. Tang ◽  
Tian F. Fang ◽  
Shi B. Yan ◽  
Hui Li ◽  
...  

2012 ◽  
Vol 116 (21) ◽  
pp. 6187-6192 ◽  
Author(s):  
Y. Y. Chen ◽  
T. F. Fang ◽  
S. B. Yan ◽  
X. Yao ◽  
B. W. Tao

2008 ◽  
Vol 1111 ◽  
Author(s):  
Detlef Klimm ◽  
Ivanildo A. Dos Santos ◽  
Izilda M. Ranieri ◽  
Sonia L. Baldochi

AbstractThe scheelite type laser crystals LiREF4 melt congruently only for RE being one of the elements Er, Tm, Yb, Lu, or possibly Y, respectively. For RE = Eu, Gd, Tb, Dy, or Ho the corresponding scheelites undergo a peritectic melting under the formation of the corresponding rare earth fluoride. The melting behavior of LiREF4 mixed crystals with two or more RE is not yet known well. If RE is a mixture of Gd and Lu, Gd rich solid solutions melt peritectically under formation of (Gd,Lu)F3 and Lu rich solid solutions melt directly without formation of other solid phases.


Sign in / Sign up

Export Citation Format

Share Document