inhomogeneous temperature field
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 16)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
А.В. Сидоров ◽  
В.М. Грабов ◽  
А.А. Зайцев ◽  
Д.В. Кузнецов

The thermoelectric effect is investigated in mixtures of colloidal solutions with ionic electrolytes in the initial state, when the formation of concentration gradients under the influence of an inhomogeneous temperature field can be neglected. Based on experimental measurements in mixtures with different concentrations of colloidal particles and ions, the conditions under with the coefficient of thermoelectric EMF is determined by the ion subsystem and under which the main contribution to the value of the thermoelectric force is made by colloidal particles are determined.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012163
Author(s):  
A. V. Mitina ◽  
V. S. Berdnikov ◽  
K. A. Mitin

Abstract The nonstationary conjugate radiation-convective heat transfer of a single silicon rod heated by an electric current with the surrounding gas medium is studied numerically in the axisymmetric formulation by the finite element method. The calculations were carried out at the Prandtl number Pr = 0.68, and the range of the Grashof number, determined by the temperature difference and the radius of the rod 9 703 ≤ Gr ≤ 261 977. It is shown that after a short incubation period, a circulation flow is formed. As a result, a significantly inhomogeneous temperature field in the longitudinal direction is formed in a silicon rod heated by an electric current. As the Grashof number increases, the inhomogeneity of the longitudinal distribution of the temperature field increases.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022023
Author(s):  
G I Volokitin ◽  
D V Moiseev

Abstract The problem of loss of stability of a circular plate under lateral compression in an inhomogeneous temperature field is considered. The theory of superposition of a small deformation on a finite one is used. A similar approach to the study of the equilibrium bifurcation of nonlinear thermoelastic bodies was used in the following works.


2021 ◽  
pp. 91-97
Author(s):  
O.L. Andrieieva ◽  
B.V. Borts ◽  
А.F. Vanzha ◽  
I.М. Korotkova ◽  
V.I. Tkachenko

Convective mass transfer in a cylindrical viscous incompressible conductive fluid layer in an inhomogeneous temperature field and in the external magnetic field of the vacuum arc current through it is theoretically investigated in this work. For a horizontal layer of a viscous, incompressible, conducting liquid of a cylindrical shape, located in a temperature field inhomogeneous in height and in an external magnetic field of a vacuum arc current flowing through it, the original equations are written. These equations consist of linearized equations for small velocity perturbations, small deviations from the equilibrium values of temperature, pressure, and magnetic field strength. The considered boundary value problem is solved for the case of free boundaries. Comparison of the experimental data with theoretical calculations made it possible to determine the rotation velocity of the steel melt during vacuum arc melting.


2021 ◽  
pp. 44-45
Author(s):  
N. N. Matveev ◽  
V. I. Lisitsyn ◽  
V. V. Saushkin ◽  
N. S. Kamalova

Due to the widespread use of polyethylene oxide (PEO) in modern technologies, studies of the relationship between its supramolecular structure and properties by means of modeling methods have recently intensified, but usually the conformational features of the structure of polymers are not taken into account in modeling. Using the example of PEO, the article substantiates a method for calculating the influence of the conformations of a polymer molecule on the temperature dependence of the averaged square of the dipole moment of its molecules.


2020 ◽  
pp. 87-98
Author(s):  
V P Radchenko ◽  
O S Afanaseva ◽  
V E Glebov

The complex influence of the surface plastic hardening technology, residual stresses, and boundary conditions on the bending of a hardened beam of EP742 alloy was performed. A phenomenological method of restoring the fields of residual stress and plastic deformations performed by its experimental verification in the particular case of ultrasonic hardening is given. The correspondence of the calculated and experimental data for the residual stresses is observed. For assess the influence of the formed residual stresses on convex cylinders, the calculation methods are used for initial strains based on using analogies between the initial (residual) plastic strains and temperature strains in an inhomogeneous temperature field. This allowed us to reduce the consideration of the problem to the problem of thermoelasticity, which was further solved by numerical methods. The effect of four types of boundary conditions for fixing the ends of the beams (rigid fastening and articulation of the ends and ribs in various combinations, cantilever) on the shape and size of the bending of the beam 10×10×100 mm after ultrasonic hardening is studied in detail. It was found that the minimum deflection is observed with a hard seal of both ends of the beam. The effect of the thickness of the beam, which varied from 2 to 10 mm, on their buckling under the same distribution of residual stresses in the hardened layer was studied, and the nonlinear nature of the increase in the deflection boom with decreasing thickness for all types of boundary conditions was established. It is shown that under all boundary conditions, the curvature along the length of the beam practically does not change, therefore it can be considered constant. The consequence of this is the preservation of the hypothesis of flat sections after the hardening procedure, which is confirmed by the calculated profile of the beam section in plane symmetry, close to a straight line. The influence of the anisotropy of surface plastic hardening on the buckling of the beam was found to be significant, which can serve as the basis for choosing the optimal hardening procedure. The performed parametric analysis of the task is presented in the form of graphical and tabular information on the results of the calculations.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4020
Author(s):  
Ning Han ◽  
Luling An ◽  
Longxin Fan ◽  
Leilei Hua ◽  
Guoqiang Gao

The success of an autoclave process is related to the temperature characteristics of the mold. An inhomogeneous temperature field in the mold affects the quality of composite parts, which may lead to residual stress, voids, and other manufacturing defects of composite parts. In order to meet high-quality production demands, the temperature field in a mold should be investigated precisely. The temperature distribution in a large frame mold is critically evaluated in this work. Then, a method to control the temperature distribution in a large frame mold is proposed. A computational fluid dynamics (CFD) model of the autoclave process is developed to predict the temperature evolution of the large frame mold. The model is validated by experimental results, which shows good agreement with a relative difference of 5.92%. The validated CFD model is then applied to analyze the temperature distribution characters in the mold with different control conditions. The results show that the temperature difference decreases by 13.3% when the mold placement angle is changed from 180 to 168°.


Sign in / Sign up

Export Citation Format

Share Document