scholarly journals An Approach to Dynamic Disaster Prevention in Strong Rock Burst Coal Seam under Multi-Aquifers: A Case Study of Tingnan Coal Mine

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7287
Author(s):  
Xinxin Zhou ◽  
Zhenhua Ouyang ◽  
Ranran Zhou ◽  
Zhenxing Ji ◽  
Haiyang Yi ◽  
...  

In order to prevent the multi-dynamic disasters induced by rock burst and roof water inrush in strong rock burst coal seams under multi-aquifers, such as is the case with the 207 working face in the Tingnan coal mine considered in this study, the exhibited characteristics of two types of dynamic disasters, namely rock burst and water inrush, were analyzed. Based on the lithology and predicted caving height of the roof, the contradiction between rock burst and water inrush was analyzed. In light of these analyses, an integrated method, roof pre-splitting at a high position and shattering at a low position, was proposed. According to the results of numerical modelling, pre-crack blasting at higher rock layers enables a cantilever roof cave in time, thereby reducing the risk of rock burst, and pre-crack blasting at underlying rock layers helps increase the crushing degree of the rock, which is beneficial for decreasing the caving height of rock layers above goaf, thereby preventing the occurrence of water inrush. Finally, the proposed method was applied in an engineering case, and the effectiveness of this method for prevention and control of multi-dynamics disasters was evaluated by field observations of the caving height of rock layers and micro-seismic monitoring. As a result, the proposed method works well integrally to prevent and control rock burst and water inrush.

2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2018 ◽  
Vol 37 (2) ◽  
pp. 288-299 ◽  
Author(s):  
Qiuyu Lu ◽  
Xiaoqin Li ◽  
Wenping Li ◽  
Wei Chen ◽  
Luanfei Li ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shuai Di

Deep rock burst accidents occur frequently and become increasingly serious. Further improving the effectiveness and accuracy of the prevention and control of rock burst, ensuring the safe and efficient production of mines, clarifying the basic causes of disasters, and refining the type of deep rock burst are the most important key links. Aiming at the problems such as unclear incentives and types and the lack of effective and targeted prevention measures of deep rock burst, taking Xin’an Mine as the research background, based on the energy theory, the coal and rock mass multisource energy unified equation was established to analyze coal and rock mass instability mechanism. According to the different degrees of participation of various factors, the types of deep rock burst are determined as three categories and four types, and the corresponding judgment criteria are proposed. The precise prevention and control system for the source of rock burst with Xin’an characteristics is proposed, successfully applied to the 8101 working face, which not only guarantees the safe production of the working face, but also achieves good economic benefits. The research results lay the foundation for improving the accuracy and precision of the prevention and control of deep rock burst and provide theoretical guidance for the safe and efficient mining of the mine.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Tianwei Lan ◽  
Chaojun Fan ◽  
Jun Han ◽  
Hongwei Zhang ◽  
Jiawei Sun

Rock burst induced by mining is one of the most serious dynamic disasters in the process of coal mining. The mechanism of a rock burst is similar to that of a natural earthquake. It is difficult to accurately predict the “time, space, and strength” of rock burst, but the possibility of rock burst can be predicted based on the results of microseismic monitoring. In this paper, the rock burst system under the tectonic stress field is established based on the practice of coal mining and the result of mine ground crustal stress measurement. According to the magnitude of microseismic monitoring, the amount of the energy and spatial position of the rock burst are determined. Based on the theory of explosion mechanics, aiming at the prevention and control of rock burst in the coal mine, the technique of liquid CO2 fracturing blasting is put forward. By the experiment of blasting mechanics, the blasting parameters are determined, and the controlling mechanism of rock burst of liquid CO2 fracturing blasting is revealed. The application of liquid CO2 fissure blasting technology in the prevention and control of rock burst in Jixian Coal Mine shows that CO2 fracturing blasting reduces the stress concentration of the rock burst system and transfers energy to the deeper part, and there is no open fire in the blasting. It is a new, safe, and efficient method to prevent and control rock burst, which can be applied widely.


Sign in / Sign up

Export Citation Format

Share Document