evolution of gene families
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 231
Author(s):  
Samson Weiner ◽  
Mukul S. Bansal

Duplication-Transfer-Loss (DTL) reconciliation is a widely used computational technique for understanding gene family evolution and inferring horizontal gene transfer (transfer for short) in microbes. However, most existing models and implementations of DTL reconciliation cannot account for the effect of unsampled or extinct species lineages on the evolution of gene families, likely affecting their accuracy. Accounting for the presence and possible impact of any unsampled species lineages, including those that are extinct, is especially important for inferring and studying horizontal transfer since many genes in the species lineages represented in the reconciliation analysis are likely to have been acquired through horizontal transfer from unsampled lineages. While models of DTL reconciliation that account for transfer from unsampled lineages have already been proposed, they use a relatively simple framework for transfer from unsampled lineages and cannot explicitly infer the location on the species tree of each unsampled or extinct lineage associated with an identified transfer event. Furthermore, there does not yet exist any systematic studies to assess the impact of accounting for unsampled lineages on the accuracy of DTL reconciliation. In this work, we address these deficiencies by (i) introducing an extended DTL reconciliation model, called the DTLx reconciliation model, that accounts for unsampled and extinct species lineages in a new, more functional manner compared to existing models, (ii) showing that optimal reconciliations under the new DTLx reconciliation model can be computed just as efficiently as under the fastest DTL reconciliation model, (iii) providing an efficient algorithm for sampling optimal DTLx reconciliations uniformly at random, (iv) performing the first systematic simulation study to assess the impact of accounting for unsampled lineages on the accuracy of DTL reconciliation, and (v) comparing the accuracies of inferring transfers from unsampled lineages under our new model and the only other previously proposed parsimony-based model for this problem.


2021 ◽  
Author(s):  
Kerry L Gendreau ◽  
Angela D Hornsby ◽  
Michael TJ Hague ◽  
Joel W McGlothlin

AbstractTarichanewts contain high concentrations of the deadly toxin TTX as an antipredator defense, requiring them to be physiologically resistant to their own toxin. Here, we reconstruct the origins of TTX self-resistance by sequencing the voltage-gated sodium channel (SCNA) gene family, the target of TTX, in newts and related salamanders. We show that extreme resistance in newts consists of a mixture of ancient changes and lineage-specific substitutions and that the nonsynonymous substitution rate is elevated in newts, suggesting positive selection. We also identify a novel exon duplication withinSCN4Aencoding an expressed TTX-binding site. Two resistance-conferring changes within newts appear to have spread via nonallelic gene conversion: in one case, one codon was copied between paralogs, and in the second, multiple substitutions were homogenized between the duplicate exons ofSCN4A. Our results demonstrate that gene conversion can accelerate the coordinated evolution of gene families in response to selection.


2018 ◽  
Vol 106 (1) ◽  
pp. 14-17
Author(s):  
Claudio Casola ◽  
A. Michelle Lawing

2017 ◽  
Vol 114 (48) ◽  
pp. 12779-12784 ◽  
Author(s):  
Arbel Harpak ◽  
Xun Lan ◽  
Ziyue Gao ◽  
Jonathan K. Pritchard

Gene conversion is the copying of a genetic sequence from a “donor” region to an “acceptor.” In nonallelic gene conversion (NAGC), the donor and the acceptor are at distinct genetic loci. Despite the role NAGC plays in various genetic diseases and the concerted evolution of gene families, the parameters that govern NAGC are not well characterized. Here, we survey duplicate gene families and identify converted tracts in 46% of them. These conversions reflect a large GC bias of NAGC. We develop a sequence evolution model that leverages substantially more information in duplicate sequences than used by previous methods and use it to estimate the parameters that govern NAGC in humans: a mean converted tract length of 250 bp and a probability of 2.5×10−7 per generation for a nucleotide to be converted (an order of magnitude higher than the point mutation rate). Despite this high baseline rate, we show that NAGC slows down as duplicate sequences diverge—until an eventual “escape” of the sequences from its influence. As a result, NAGC has a small average effect on the sequence divergence of duplicates. This work improves our understanding of the NAGC mechanism and the role that it plays in the evolution of gene duplicates.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 49 ◽  
Author(s):  
Fabian Schreiber

Summary: Phylogenetic trees are widely used to represent the evolution of gene families. As the history of gene families can be complex (including lots of gene duplications), its visualisation can become a difficult task. A good/accurate visualisation of phylogenetic trees - especially on the web - allows easier understanding and interpretation of trees to help to reveal the mechanisms that shape the evolution of a specific set of gene/species. Here, I present treeWidget, a modular BioJS component to visualise phylogenetic trees on the web. Through its modularity, treeWidget can be easily customized to allow the display of sequence information, e.g. protein domains and alignment conservation patterns.Availability: http://github.com/biojs/biojs; http://dx.doi.org/10.5281/zenodo.7707


Sign in / Sign up

Export Citation Format

Share Document