nonsynonymous substitution rate
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kerry L Gendreau ◽  
Angela D Hornsby ◽  
Michael TJ Hague ◽  
Joel W McGlothlin

AbstractTarichanewts contain high concentrations of the deadly toxin TTX as an antipredator defense, requiring them to be physiologically resistant to their own toxin. Here, we reconstruct the origins of TTX self-resistance by sequencing the voltage-gated sodium channel (SCNA) gene family, the target of TTX, in newts and related salamanders. We show that extreme resistance in newts consists of a mixture of ancient changes and lineage-specific substitutions and that the nonsynonymous substitution rate is elevated in newts, suggesting positive selection. We also identify a novel exon duplication withinSCN4Aencoding an expressed TTX-binding site. Two resistance-conferring changes within newts appear to have spread via nonallelic gene conversion: in one case, one codon was copied between paralogs, and in the second, multiple substitutions were homogenized between the duplicate exons ofSCN4A. Our results demonstrate that gene conversion can accelerate the coordinated evolution of gene families in response to selection.


2020 ◽  
Vol 37 (8) ◽  
pp. 2430-2439 ◽  
Author(s):  
Sadie R Wisotsky ◽  
Sergei L Kosakovsky Pond ◽  
Stephen D Shank ◽  
Spencer V Muse

Abstract Most molecular evolutionary studies of natural selection maintain the decades-old assumption that synonymous substitution rate variation (SRV) across sites within genes occurs at levels that are either nonexistent or negligible. However, numerous studies challenge this assumption from a biological perspective and show that SRV is comparable in magnitude to that of nonsynonymous substitution rate variation. We evaluated the impact of this assumption on methods for inferring selection at the molecular level by incorporating SRV into an existing method (BUSTED) for detecting signatures of episodic diversifying selection in genes. Using simulated data we found that failing to account for even moderate levels of SRV in selection testing is likely to produce intolerably high false positive rates. To evaluate the effect of the SRV assumption on actual inferences we compared results of tests with and without the assumption in an empirical analysis of over 13,000 Euteleostomi (bony vertebrate) gene alignments from the Selectome database. This exercise reveals that close to 50% of positive results (i.e., evidence for selection) in empirical analyses disappear when SRV is modeled as part of the statistical analysis and are thus candidates for being false positives. The results from this work add to a growing literature establishing that tests of selection are much more sensitive to certain model assumptions than previously believed.


2007 ◽  
Vol 104 (18) ◽  
pp. 7489-7494 ◽  
Author(s):  
Margaret A. Bakewell ◽  
Peng Shi ◽  
Jianzhi Zhang

Observations of numerous dramatic and presumably adaptive phenotypic modifications during human evolution prompt the common belief that more genes have undergone positive Darwinian selection in the human lineage than in the chimpanzee lineage since their evolutionary divergence 6–7 million years ago. Here, we test this hypothesis by analyzing nearly 14,000 genes of humans and chimps. To ensure an accurate and unbiased comparison, we select a proper outgroup, avoid sequencing errors, and verify statistical methods. Our results show that the number of positively selected genes is substantially smaller in humans than in chimps, despite a generally higher nonsynonymous substitution rate in humans. These observations are explainable by the reduced efficacy of natural selection in humans because of their smaller long-term effective population size but refute the anthropocentric view that a grand enhancement in Darwinian selection underlies human origins. Although human and chimp positively selected genes have different molecular functions and participate in different biological processes, the differences do not ostensibly correspond to the widely assumed adaptations of these species, suggesting how little is currently known about which traits have been under positive selection. Our analysis of the identified positively selected genes lends support to the association between human Mendelian diseases and past adaptations but provides no evidence for either the chromosomal speciation hypothesis or the widespread brain-gene acceleration hypothesis of human origins.


Microbiology ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Volodymyr Dvornyk

The cpmA gene mediates an output signal in the cyanobacterial circadian system. This gene and its homologues are evolutionarily old, and occur in some non-photosynthetic bacteria and archaea as well as in cyanobacteria. The gene has two functional domains that differ drastically in their level of polymorphism: the N-terminal domain is much more variable than the PurE homologous C-terminal domain. The phylogenetic tree of the cpmA homologues features four main clades (C1–C4), two of which (C1 and C3) belong to cyanobacteria. These cyanobacterial clades match respective ones in the previously reported phylogenetic trees of the other genes involved in the circadian system. The phylogenetic analysis suggested that the C3 subfamily, which comprises the genes from the cyanobacteria with the kaiBC-based circadian system, experienced a lateral transfer, probably from evolutionarily old proteobacteria about 1000 million years ago. The genes of this subfamily have a significantly higher nonsynonymous substitution rate than those of C1 (2·13×10−10 and 1·53×10−10 substitutions per nonsynonymous site per year, respectively). It appears that the functional and selective constraints of the kaiABC-based system have slowed down the rate of sequence evolution compared to the cpmA homologues of the kaiBC-based system. On the other hand, the differences in the mutation rates between the two cyanobacterial clades point to the different functional constraints of the systems with or without kaiA.


2005 ◽  
Vol 35 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Ying Li ◽  
Michael Wallis ◽  
Ya-ping Zhang

Divergence of proteins in signaling pathways requires ligand and receptor coevolution to maintain or improve binding affinity and/or specificity. In this paper we show a clear case of coevolution between the prolactin (PRL) gene and its receptor (prolactin receptor, PRLR) in mammals. First we observed episodic evolution of the extracellular and intracellular domains of the PRLR, which is closely consistent with that seen in PRL. Correlated evolution was demonstrated both between PRL and its receptor and between the two domains of the PRLR using Pearson’s correlation coefficient. On comparing the ratio of the nonsynonymous substitution rate to synonymous substitution rate (ω =dN/dS) for each branch of the star phylogeny of mammalian PRLRs, separately for the extracellular domain (ECD) and the transmembrane domain/intracellular domain (TMD/ICD), we observed a lower ω ratio for ECD than TMD/ICD along those branches leading to pig, dog and rabbit but a higher ratio for ECD than TMD/ICD on the branches leading to primates, rodents and ruminants, on which bursts of rapid evolution were observed. These observations can be best explained by coevolution between PRL and its receptor and between the two domains of the PRLR.


2004 ◽  
Vol 78 (18) ◽  
pp. 9782-9789 ◽  
Author(s):  
Javier Fernandez ◽  
Deborah Taylor ◽  
Duncan R. Morhardt ◽  
Kathleen Mihalik ◽  
Montserrat Puig ◽  
...  

ABSTRACT Two chimpanzees, 1535 and 1536, became persistently infected following inoculation with RNA transcripts from cDNA clones of hepatitis C virus (HCV). Analysis of the HCV genomes from both animals showed an accumulation of amino acid substitutions over time. The appearance of substitutions in the envelope genes was associated with increased antienvelope antibody titers. However, extensive mutations were not incorporated into hypervariable region 1 (HVR1). A comparison of the nonsynonymous substitution rate/synonymous substitution rate was made at various time points to analyze selective pressure. The highest level of selective pressure occurred during the acute phase and decreased as the infection continued. The nonsynonymous substitution rate was initially higher than the synonymous substitution rate but decreased over time from 3.3 × 10−3 (chimpanzee 1535) and 3.2 × 10−3 (chimpanzee 1536) substitutions/site/year at week 26 to 1.4 × 10−3 (chimpanzee 1535) and 1.7 × 10−3 (chimpanzee 1536) at week 216, while the synonymous substitution rate remained steady at ∼1 × 10−3 substitutions/site/year. Analysis of PCR products using single-stranded conformational polymorphism indicated a low level of heterogeneity in the viral genome. The results of these studies confirm that the persistence of infection is not solely due to changes in HVR1 or heterogeneity and that the majority of variants observed in natural infections could not arise simply through mutation during the time period most humans and chimpanzees are observed. These data also indicate that immune pressure and selection continue throughout the chronic phase.


Sign in / Sign up

Export Citation Format

Share Document