scholarly journals Climbing since the early Miocene: The fossil record of Paullinieae (Sapindaceae)

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248369
Author(s):  
Nathan A. Jud ◽  
Sarah E. Allen ◽  
Chris W. Nelson ◽  
Carolina L. Bastos ◽  
Joyce G. Chery

Paullinieae are a diverse group of tropical and subtropical climbing plants that belong to the soapberry family (Sapindaceae). The six genera in this tribe make up approximately one-quarter of the species in the family, but a sparse fossil record limits our understanding of their diversification. Here, we provide the first description of anatomically preserved fossils of Paullinieae and we re-evaluate other macrofossils that have been attributed to the tribe. We identified permineralized fossil roots in collections from the lower Miocene Cucaracha Formation where it was exposed along the Culebra Cut of the Panama Canal. We prepared the fossils using the cellulose acetate peel technique and compared the anatomy with that of extant Paullinieae. The fossil roots preserve a combination of characters found only in Paullinieae, including peripheral secondary vascular strands, vessel dimorphism, alternate intervessel pitting with coalescent apertures, heterocellular rays, and axial parenchyma strands of 2–4 cells, often with prismatic crystals. We also searched the paleontological literature for other occurrences of the tribe. We re-evaluated leaf fossils from western North America that have been assigned to extant genera in the tribe by comparing their morphology to herbarium specimens and cleared leaves. The fossil leaves that were assigned to Cardiospermum and Serjania from the Paleogene of western North America are likely Sapindaceae; however, they lack diagnostic characters necessary for inclusion in Paullinieae and should be excluded from those genera. Therefore, the fossils described here as Ampelorhiza heteroxylon gen. et sp. nov. are the oldest macrofossil evidence of Paullinieae. They provide direct evidence of the development of a vascular cambial variant associated with the climbing habit in Sapindaceae and provide strong evidence of the diversification of crown-group Paullinieae in the tropics by 18.5–19 million years ago.

2013 ◽  
Vol 87 (1) ◽  
pp. 123-146 ◽  
Author(s):  
Vladimir N. Makarkin ◽  
S. Bruce Archibald

The early Eocene green lacewings (Neuroptera, Chrysopidae) of the Okanagan Highlands deposits of McAbee, and Driftwood Canyon, British Columbia (Canada) and Republic, Washington (U.S.A.) are treated in detail for the first time. At least six genera are present, one unnamed, three new, with at least 10 new species, six named:Protochrysa fuscobasalisn. sp. (McAbee) (Limaiinae, the youngest known record of the subfamily),Okanaganochrysa coltsunaen. gen. n. sp. (McAbee),Adamsochrysa asperan. gen. n. sp. (McAbee),A. wilsonin. gen. n. sp. (Republic),Archaeochrysa profractan. sp. (McAbee), andPseudochrysopa harveyin. gen. n. sp. (Driftwood Canyon) (all Nothochrysinae, the latter provisionally). The four unnamed species include one assigned toPseudochrysopa, two likely belonging toAdamsochrysa, and one of an unknown nothochrysine genus. Microtholi are detected on the abdominal sclerites ofAdamsochrysa wilsoni, and the spermatheca and spermathecal duct in the abdomen ofPseudochrysopa harveyi, the first reported occurrences of these preserved in fossil Chrysopidae. Structures were detected on the apical wing margins of some species that appear similar to trichosors, which are unknown in Chrysopidae, but are present in some other neuropteran families. This is the richest described assemblage of the family anywhere in the fossil record. Okanagan chrysopids were also morphologically and presumably ecologically diverse, including large species with rich venation and well as those with simplified venation and the smallest known fossil species. This is the oldest reported occurrence of the family in North America.


1997 ◽  
Vol 71 (6) ◽  
pp. 1109-1124 ◽  
Author(s):  
Li Guo-Qing ◽  
Mark V. H. Wilson ◽  
Lance Grande

Review of recently collected material of Eohiodon from North America suggests that there are two valid species, E. rosei (Hussakof) and E. woodroffi Wilson. Eohiodon falcatus Grande is identical to E. woodruffi in known skeletal features and nearly all meristic features and is treated as a junior synonym of the latter. The fossil genus Eohiodon Cavender differs from Hiodon Lesueur, which is known from both fossil and extant species, in numerous meristic and osteological features. The caudal skeleton in Eohiodon is nearly identical to that in Hiodon.The traditionally accepted Notopteroidei, containing Lycopteridae, Hiodontidae, and Notopteridae, is a polypheletic group. The Asian fossil family Lycopteridae is not more closely related to Hiodontidae than it is to other taxa in the Osteoglossomorpha, but is sister to all other Osteoglossomorpha. The Hiodontiformes sensu stricto, including only the family Hiodontidae, is the sister-group of the Osteoglossiformes. This family is not more closely related to notopterids than to other taxa in Osteoglossiformes. The Notopteridae are most closely related to the Mormyroidea; together they and the fossil family Ostariostomidae constitute the sister-group of the Osteoglossoidei.Fossil records of Hiodontiformes sensu stricto and Notopteroidei indicate a widespread pre-Neogene biogeographic range of these freshwater teleosts, suggesting that extinction must have been involved in the Cenozoic evolution of these two osteoglossomorph sublineages.


1964 ◽  
Vol 21 (5) ◽  
pp. 933-939 ◽  
Author(s):  
Richard H. Rosenblatt

A new species, Pholis clemensi, referred to the family Pholidae, is named and described from 12 specimens taken in southern British Columbia waters and the Strait of Juan de Fuca. Pholis clemensi is compared with other members of the genus, and a key is given to the North American species.


2009 ◽  
Vol 83 (4) ◽  
pp. 562-574 ◽  
Author(s):  
Daniel B. Blake ◽  
Roger W. Portell

Oyenaster oblidus, Ocalaster timucum, and Ocalaster seloyi are new genera and species of the family Goniasteridae (Asteroidea) described from the Eocene Ocala Limestone of Florida. Although the fossil record of asteroids is sketchy, goniasterids appear to have been important contributors to marine communities since at least the Middle Jurassic. Similarities between living goniasterids and their fossil precursors indicate that plesiomorphy and convergence have been important in family history, and as a result, taxonomic interpretation is challenging. Even partial fossil goniasterids are rare, forcing systematists to rely heavily on isolated marginal ossicles, although some authors have expressed the need for caution. Building around three new taxa, we suggest that broader approaches can aid systematic interpretation of all crown-group asteroids. We also suggest that the inevitably idiosyncratic interpretations of marginal-based systematics can be partially tested using blind evaluations.


2005 ◽  
Vol 142 (4) ◽  
pp. 377-398 ◽  
Author(s):  
J. M. ADRAIN ◽  
S. R. WESTROP

The Notch Peak Formation (Late Cambrian, Sunwaptan) of western Utah yields diverse silicified trilobite faunas that provide new information on the anatomy of many taxa. The family Ptychaspididae Raymond, 1924, is represented by species of Keithiella Rasetti, 1944; Idiomesus Raymond, 1924; Euptychaspis Ulrich in Bridge, 1931; and Macronoda Lochman, 1964. At least four species are new, of which E. lawsonensis and M. notchpeakensis are named formally. Much previous work on Late Cambrian trilobites has emphasized biostratigraphic utility and the recognition of geographically widespread species. Data from new silicified collections indicate that this approach is difficult to justify because many putative ‘index species’ actually represent a plexus of closely related species whose biostratigraphic significance has yet to be determined. One such plexus is represented by E. kirki Kobayashi, 1935, whose previously reported occurrences in Texas, Oklahoma, Utah, Nevada and northern Canada record at least four distinct species. Similarly, Macronoda can now be shown to consist of at least five late Sunwaptan species in south-central and western North America.


2019 ◽  
Vol 56 (8) ◽  
pp. 803-813
Author(s):  
Gerald Mayr ◽  
S. Bruce Archibald ◽  
Gary W. Kaiser ◽  
Rolf W. Mathewes

We survey the known avian fossils from Ypresian (early Eocene) fossil sites of the North American Okanagan Highlands, mainly in British Columbia (Canada). All specimens represent taxa that were previously unknown from the Eocene of far-western North America. Wings from the McAbee site are tentatively referred to the Gaviiformes and would constitute the earliest fossil record of this group of birds. A postcranial skeleton from Driftwood Canyon is tentatively assigned to the Songziidae, a taxon originally established for fossils from the Ypresian of China. Two skeletons from Driftwood Canyon and the McAbee site are tentatively referred to Coliiformes and Zygodactylidae, respectively, whereas three further fossils from McAbee, Blakeburn, and Republic (Washington, USA) are too poorly preserved for even a tentative assignment. The specimens from the Okanagan Highlands inhabited relatively high paleoaltitudes with microthermal climates (except Quilchena: lower mesothermal) and mild winters, whereas most other Ypresian fossil birds are from much warmer lowland paleoenvironments with upper mesothermal to megathermal climates. The putative occurrence of a gaviiform bird is particularly noteworthy because diving birds are unknown from other lacustrine Ypresian fossil sites of the Northern Hemisphere. The bones of the putative zygodactylid show a sulphurous colouration, and we hypothesize that this highly unusual preservation may be due to the metabolic activity of sulphide-oxidizing bacteria.


2000 ◽  
Vol 8 (6) ◽  
pp. 34-35
Author(s):  
Willow B. Murphy ◽  
Walter A. Kelley ◽  
Richard C. Dujay

The genus Cryptantha Lehm ex G. Don section Oreocarya (E. Greene) Payson of the family Boraginaceae presents some problems to botanists, both professional and amateur, in the keying and identification of species. The genus contains approximately 150 species, the section about 60 perennial and biennial herbs located generally in western North America. Identification has presented some taxonomic difficulty due to the variability and lack of distinctive vegetative characters. Botanists have turned to the nutlet (fruit) and flower morphology to aid in identification for precise specific differentiation. In the past, 10X magnification and a decent botanical illustrator were required to provide the illustrations necessary to assist in this identification. We are in the process of collecting micrographs of nutlets (dorsal, sagital, and ventral views) and developing a webpage containing these micrographs along with descriptions of their morphological variations.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Marc A. Mapalo ◽  
Ninon Robin ◽  
Brendon E. Boudinot ◽  
Javier Ortega-Hernández ◽  
Phillip Barden

Tardigrades are a diverse group of charismatic microscopic invertebrates that are best known for their ability to survive extreme conditions. Despite their long evolutionary history and global distribution in both aquatic and terrestrial environments, the tardigrade fossil record is exceedingly sparse. Molecular clocks estimate that tardigrades diverged from other panarthropod lineages before the Cambrian, but only two definitive crown-group representatives have been described to date, both from Cretaceous fossil deposits in North America. Here, we report a third fossil tardigrade from Miocene age Dominican amber. Paradoryphoribius chronocaribbeus gen. et sp. nov. is the first unambiguous fossil representative of the diverse superfamily Isohypsibioidea, as well as the first tardigrade fossil described from the Cenozoic. We propose that the patchy tardigrade fossil record can be explained by the preferential preservation of these microinvertebrates as amber inclusions, coupled with the scarcity of fossiliferous amber deposits before the Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document