marker particle
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 1)

2015 ◽  
Vol 93 (10) ◽  
pp. 747-753 ◽  
Author(s):  
Adam Munn ◽  
Mathew Stewart ◽  
Elizabeth Price ◽  
Alice Peilon ◽  
Tom Savage ◽  
...  

Gut capacity is an important factor in digestive physiology and is often measured as dry matter fill (DMF) following dissection, which prevents repeated measures in the same animal. It was proposed to calculate DMF from food intake, digestibility, and gut mean retention time (MRT), but empirical tests of this are few. We calculated DMF from intake, digestibility, and the MRT of small-particle (1 mm) and large-particle (20 mm) markers in 20 sheep (Ovis aries L., 1758) fed at different intake levels and compared results with DMF at dissection at the end of the feeding trial. MRT for smaller particles was significantly shorter than for larger particles (34.4 ± 6.1 vs. 42.5 ± 7.6 h, respectively). Correspondingly, DMF calculated from smaller particles (0.98 ± 0.27 kg) was significantly lower than DMF calculated from larger particles (1.20 ± 0.30 kg). The latter was not significantly different from DMF measured at dissection (1.18 ± 0.34 kg). These results suggest that DMF can be estimated from measures of digestive physiology. The choice of particle marker to determine MRT is crucial for the accuracy of the proxy. In ruminants, where small particles are consistently eliminated faster than larger particles, considerations of marker particle size are particularly important.


2014 ◽  
Vol 21 (4) ◽  
pp. 768-773 ◽  
Author(s):  
Martin Donnelley ◽  
Kaye S. Morgan ◽  
Karen K. W. Siu ◽  
Andreas Fouras ◽  
Nigel R. Farrow ◽  
...  

To assess potential therapies for respiratory diseases in which mucociliary transit (MCT) is impaired, such as cystic fibrosis and primary ciliary dyskinesia, a novel and non-invasive MCT quantification method has been developed in which the transit rate and behaviour of individual micrometre-sized deposited particles are measured in live mice using synchrotron phase-contrast X-ray imaging. Particle clearance by MCT is known to be a two-phase process that occurs over a period of minutes to days. Previous studies have assessed MCT in the fast-clearance phase, ∼20 min after marker particle dosing. The aim of this study was to non-invasively image changes in particle presence and MCT during the slow-clearance phase, and simultaneously determine whether repeat synchrotron X-ray imaging of mice was feasible over periods of 3, 9 and 25 h. All mice tolerated the repeat imaging procedure with no adverse effects. Quantitative image analysis revealed that the particle MCT rate and the number of particles present in the airway both decreased with time. This study successfully demonstrated for the first time that longitudinal synchrotron X-ray imaging studies are possible in live small animals, provided appropriate animal handling techniques are used and care is taken to reduce the delivered radiation dose.


Sign in / Sign up

Export Citation Format

Share Document