mass spectrometric approach
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 6)

H-INDEX

30
(FIVE YEARS 0)

Biochimie ◽  
2021 ◽  
Author(s):  
Aleksandr Viktorovich Protasov ◽  
Olga Alexandrovna Mirgorodskaya ◽  
Yuri Petrovich Kozmin ◽  
Johan Gobom


Author(s):  
Amol O. Bajaj ◽  
Suraj Saraswat ◽  
Juha E. A. Knuuttila ◽  
Joanna Freeke ◽  
J. Benjamin Stielow ◽  
...  

Rapid and accurate differentiation of Mycobacterium tuberculosis complex (MTBC) species from other mycobacterium is essential for appropriate therapeutic management, timely intervention for infection control and initiation of appropriate health care measures. However, routine clinical characterization methods for Mycobacterium tuberculosis (Mtb) species remain both, time consuming and labor intensive. In the present study, an innovative liquid Chromatography-Mass Spectrometry method for the identification of clinically most relevant Mycobacterium tuberculosis complex species is tested using a model set of mycobacterium strains. The methodology is based on protein profiling of Mycobacterium tuberculosis complex isolates, which are used as markers of differentiation. To test the resolving power, speed, and accuracy of the method, four ATCC type strains and 37 recent clinical isolates of closely related species were analyzed using this new approach. Using different deconvolution algorithms, we detected hundreds of individual protein masses, with a subpopulation of these functioning as species-specific markers. This assay identified 216, 260, 222, and 201 proteoforms for M. tuberculosis ATCC 27294™, M. microti ATCC 19422™, M. africanum ATCC 25420™, and M. bovis ATCC 19210™ respectively. All clinical strains were identified to the correct species with a mean of 95% accuracy. Our study successfully demonstrates applicability of this novel mass spectrometric approach to identify clinically relevant Mycobacterium tuberculosis complex species that are very closely related and difficult to differentiate with currently existing methods. Here, we present the first proof-of-principle study employing a fast mass spectrometry-based method to identify the clinically most prevalent species within the Mycobacterium tuberculosis species complex.



Separations ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 58
Author(s):  
Sara Elsa Aita ◽  
Anna Laura Capriotti ◽  
Chiara Cavaliere ◽  
Andrea Cerrato ◽  
Benedetta Giannelli Moneta ◽  
...  

Wild neotropical blueberries, endemic of Central and South American areas, are promising yet still undisclosed sources of bioactive compounds. Most research studies have addressed wild and cultivated blueberries from Europe and North America, despite the extremely wide variety of wild neotropical species. In the present paper, for the first time, the phenolic composition of Disterigma alaternoides was investigated through ultra-high-performance liquid chromatography coupled to high-resolution mass-spectrometric analysis followed by accurate data analysis and compound validation with a dedicated structure-based workflow. D. alaternoides, which belongs to a closely related genus to that of the common blueberry, grows exclusively in the Andean regions over 2000 above sea level. Thanks to the dedicated analytical platform, 249 phenolic compounds were tentatively identified, including several anthocyanins, flavonoids, phenolic acids, and proanthocyanidins. Thenature and heterogeneity of identified phenolic compounds demonstrate once more the need for a more profound knowledge of such still uncharted matrices.



2021 ◽  
Author(s):  
Zhijue Xu ◽  
Xin Ku ◽  
Jiaqi Tian ◽  
Han Zhang ◽  
Jingli Hou ◽  
...  

SummaryThe trimeric spike protein (S) mediates host-cell entry and membrane fusion of SARS-CoV-2. S protein is highly glycosylated, whereas its O-glycosylation is still poorly understood. Herein, we site-specifically examine the O-glycosylation of S protein through a mass spectrometric approach with HCD-triggered-ETD model. We identify 15 high-confidence O-glycosites and at least 10 distinct O-glycan structures on S protein. Peptide microarray assays prove that human ppGalNAc-T6 actively participates in O-glycosylation of S protein. Importantly, the upregulation of ppGalNAc-T6 expression can profoundly enhance the O-glycosylation level by generating new O-glycosites and increasing both O-glycan heterogeneity and intensities. Further molecular dynamics simulations reveal that the O-glycosylation on the protomer-interface regions, which are mainly modified by ppGalNAc-T6, can potentially stabilize the trimeric S protein structure. Our work provides deep molecular insights of how viral infection harnesses the host O-glycosyltransferases to dynamically regulate the O-glycosylation level of the viral envelope protein responsible for membrane fusion.



2021 ◽  
Author(s):  
Bethany Keen ◽  
Adam Cawley ◽  
Chris Fouracre ◽  
James Pyke ◽  
Shanlin Fu






2020 ◽  
Vol 92 (8) ◽  
pp. 1227-1237
Author(s):  
Ivan. S. Pytskii ◽  
Irina V. Minenkova ◽  
Elena S. Kuznetsova ◽  
Rinad Kh. Zalavutdinov ◽  
Aleksei V. Uleanov ◽  
...  

AbstractThe article describes a comprehensive mass spectrometric approach to the study of surfaces of structural materials. The combined use of thermal desorption mass spectrometry, gas and liquid chromatography, and laser desorption/ionization mass spectrometry (LDI) to provide information about the surface and surface layers of materials is proposed. The suggested method allows one to determine the thermodynamic characteristics of compounds and surface contaminants adsorbed on surfaces, as well as surface layers, to determine the composition of volatile and non-volatile contaminants on the surface, and to determine the nature of the distribution over the surface of these compounds. The method allows to obtain the most complete information about the surface condition and can be used to predict the life of structural materials.



2020 ◽  
Vol 180 ◽  
pp. 108436
Author(s):  
Francesca Sabatini ◽  
Eva Eis ◽  
Ilaria Degano ◽  
Mathieu Thoury ◽  
Ilaria Bonaduce ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document