larval amphibians
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 17)

H-INDEX

31
(FIVE YEARS 4)

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1426
Author(s):  
Martin Miguel Casco-Robles ◽  
Kayo Yasuda ◽  
Kensuke Yahata ◽  
Fumiaki Maruo ◽  
Chikafumi Chiba

Newts are unique salamanders that can regenerate their limbs as postmetamorphic adults. In order to regenerate human limbs as newts do, it is necessary to determine whether the cells homologous to those contributing to the limb regeneration of adult newts also exist in humans. Previous skin manipulation studies in larval amphibians have suggested that stump skin plays a pivotal role in the axial patterning of regenerating limbs. However, in adult newts such studies are limited, though they are informative. Therefore, in this article we have conducted skin manipulation experiments such as rotating the skin 180° around the proximodistal axis of the limb and replacing half of the skin with that of another location on the limb or body. We found that, contrary to our expectations, adult newts robustly regenerated limbs with a normal axial pattern regardless of skin manipulation, and that the appearance of abnormalities was stochastic. Our results suggest that the tissue under the skin, rather than the skin itself, in the intact limb is of primary importance in ensuring the normal axial pattern formation in adult newt limb regeneration. We propose that the important tissues are located in small areas underlying the ventral anterior and ventral posterior skin.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lauren E. Nadler ◽  
Mark I. McCormick ◽  
Jacob L. Johansen ◽  
Paolo Domenici

AbstractUsing social groups (i.e. schools) of the tropical damselfish Chromis viridis, we test how familiarity through repeated social interactions influences fast-start responses, the primary defensive behaviour in a range of taxa, including fish, sharks, and larval amphibians. We focus on reactivity through response latency and kinematic performance (i.e. agility and propulsion) following a simulated predator attack, while distinguishing between first and subsequent responders (direct response to stimulation versus response triggered by integrated direct and social stimulation, respectively). In familiar schools, first and subsequent responders exhibit shorter latency than unfamiliar individuals, demonstrating that familiarity increases reactivity to direct and, potentially, social stimulation. Further, familiarity modulates kinematic performance in subsequent responders, demonstrated by increased agility and propulsion. These findings demonstrate that the benefits of social recognition and memory may enhance individual fitness through greater survival of predator attacks.


Author(s):  
Elizabeth S. Cha ◽  
Madison T. Uhrin ◽  
Sara J McClelland ◽  
Sarah Woodley

Exposure to stressors and elevation of glucocorticoid hormones such as corticosterone (CORT) has widespread effects on vertebrate brain development. Previous studies have shown that exposure to environmental stressors alters larval amphibian brain morphology and behavior, yet the effects of CORT on amphibian neural development are still unknown. We exposed prometamorphic Northern Leopard Frog (Lithobates pipiens (Schreber, 1782)) tadpoles for 7 days to a concentration of exogenous CORT (45.56 g/L ) that produced physiologically-relevant increases in plasma CORT. This brief exposure to CORT, relatively late in development, resulted in a significantly larger diencephalon width (relative to body mass) when compared to controls. Although we were unable to detect changes in behavior or body morphology, our results indicate that brain shape is modulated by exposure to CORT. More studies are needed to better understand what accounts for the CORT-induced change in brain shape as well as the functional consequences of these changes.


2021 ◽  
pp. 117638
Author(s):  
Kelly L. Smalling ◽  
Emily B. Oja ◽  
Danielle M. Cleveland ◽  
Jon M. Davenport ◽  
Collin Eagles-Smith ◽  
...  

2021 ◽  
Author(s):  
Dino Milotic

With ongoing amphibian declines, it is essential to determine possible contributors such as diseases and environmental contaminants that may increase susceptibility. A potential contaminant is road salt (mainly NaCl), which leaches into aquatic environments. I examined whether road salts make larval amphibians (tadpoles) more susceptible to trematode parasite infection, and also how these affect free-living trematode infectious stages (cercariae). I exposed Rana sylvatica (wood frogs) and R. pipiens (northern leopard frogs) to control, medium (400 mg/L), and high salt (800 mg/L) treatments, and then to trematodes. High salt tended to reduce wood frog anti-parasite behaviour and resistance to infection but the opposite was seen for R. pipiens, although these tadpoles had elevated lymphocyte counts in high salinity. Trematodes were differentially affected by increased salinities. The results suggest that host-parasite-environment interactions are complex, with species differentially affected by contaminants, which may lead to community shifts in predominant hosts and parasite species.


2021 ◽  
Author(s):  
Dino Milotic

With ongoing amphibian declines, it is essential to determine possible contributors such as diseases and environmental contaminants that may increase susceptibility. A potential contaminant is road salt (mainly NaCl), which leaches into aquatic environments. I examined whether road salts make larval amphibians (tadpoles) more susceptible to trematode parasite infection, and also how these affect free-living trematode infectious stages (cercariae). I exposed Rana sylvatica (wood frogs) and R. pipiens (northern leopard frogs) to control, medium (400 mg/L), and high salt (800 mg/L) treatments, and then to trematodes. High salt tended to reduce wood frog anti-parasite behaviour and resistance to infection but the opposite was seen for R. pipiens, although these tadpoles had elevated lymphocyte counts in high salinity. Trematodes were differentially affected by increased salinities. The results suggest that host-parasite-environment interactions are complex, with species differentially affected by contaminants, which may lead to community shifts in predominant hosts and parasite species.


2021 ◽  
Vol 288 (1945) ◽  
pp. 20202966
Author(s):  
D. R. Daversa ◽  
R. F. Hechinger ◽  
E. Madin ◽  
A. Fenton ◽  
A. I. Dell ◽  
...  

Research on the ‘ecology of fear’ posits that defensive prey responses to avoid predation can cause non-lethal effects across ecological scales. Parasites also elicit defensive responses in hosts with associated non-lethal effects, which raises the longstanding, yet unresolved question of how non-lethal effects of parasites compare with those of predators. We developed a framework for systematically answering this question for all types of predator–prey and host–parasite systems. Our framework reveals likely differences in non-lethal effects not only between predators and parasites, but also between different types of predators and parasites. Trait responses should be strongest towards predators, parasitoids and parasitic castrators, but more numerous and perhaps more frequent for parasites than for predators. In a case study of larval amphibians, whose trait responses to both predators and parasites have been relatively well studied, existing data indicate that individuals generally respond more strongly and proactively to short-term predation risks than to parasitism. Apart from studies using amphibians, there have been few direct comparisons of responses to predation and parasitism, and none have incorporated responses to micropredators, parasitoids or parasitic castrators, or examined their long-term consequences. Addressing these and other data gaps highlighted by our framework can advance the field towards understanding how non-lethal effects impact prey/host population dynamics and shape food webs that contain multiple predator and parasite species.


Author(s):  
Brian J. Tornabene ◽  
Michael F. Chislock ◽  
Megan E. Gannon ◽  
Maria S. Sepúlveda ◽  
Jason T. Hoverman

Parasitology ◽  
2020 ◽  
Vol 147 (13) ◽  
pp. 1515-1523
Author(s):  
Logan S. Billet ◽  
Vanessa P. Wuerthner ◽  
Jessica Hua ◽  
Rick A. Relyea ◽  
Jason T. Hoverman

AbstractThe study of priority effects with respect to coinfections is still in its infancy. Moreover, existing coinfection studies typically focus on infection outcomes associated with exposure to distinct sets of parasite species, despite that functionally and morphologically similar parasite species commonly coexist in nature. Therefore, it is important to understand how interactions between similar parasites influence infection outcomes. Surveys at seven ponds in northwest Pennsylvania found that multiple species of echinostomes commonly co-occur. Using a larval anuran host (Rana pipiens) and the two most commonly identified echinostome species from our field surveys (Echinostoma trivolvis and Echinoparyphium lineage 3), we examined how species composition and timing of exposure affect patterns of infection. When tadpoles were exposed to both parasites simultaneously, infection loads were higher than when exposed to Echinoparyphium alone but similar to being exposed to Echinostoma alone. When tadpoles were sequentially exposed to the parasite species, tadpoles first exposed to Echinoparyphium had 23% lower infection loads than tadpoles first exposed to Echinostoma. These findings demonstrate that exposure timing and order, even with similar parasites, can influence coinfection outcomes, and emphasize the importance of using molecular methods to identify parasites for ecological studies.


2019 ◽  
Vol 103 (4) ◽  
pp. 571-578
Author(s):  
Amanda L. Loder ◽  
Russ Weeber ◽  
Sarah N. P. Wong ◽  
Ian S. Spooner ◽  
Mark L. Mallory
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document