Buckling of Piles in Layered Soils by Transfer Matrix Method

Author(s):  
Lu Zheng ◽  
Tao Deng ◽  
Qijian Liu

The transfer matrix method is applied to the buckling of end-bearing piles partially or fully embedded in a layered elastic medium with a constant coefficient of subgrade reaction for each layer. The solution of the governing differential equation for each pile segment can be expressed as the product of a fourth-order matrix and a coefficient determinant. Using the transfer matrix method and combining the boundary conditions at both ends of the pile, the buckling load is obtained by solving the eigenvalue equation. A parametric study is performed to investigate the effects of the properties of the soil–pile system on the stability capacity of the pile. It is shown that the effects of the embedment ratio, soil layer thickness, and soil stiffness on the buckling of piles are quite significant. Several calculation examples are presented to verify the present method.

2021 ◽  
pp. 107754632098537
Author(s):  
Dongyang Chen ◽  
Junwei Yang ◽  
Weican Guo ◽  
Yanjia Liu ◽  
Chaojie Gu

Efficient and accurate simulation of the vibration characteristics of a composite pipeline system is the key to the study of the stability and vibration control of the pipeline system. A simulation method called transfer matrix method for multibody systems is used to predict the vibration of a composite pipeline resting on an elastic soil. The transfer matrix of the Euler–Bernoulli beams considering the internal fluid velocity and high-efficiency dynamics model of the pipeline system under the action of the elastic foundation are derived. The simulation results have good agreement with that of the literature and commercial software ANSYS Workbench which verified the accuracy of the numerical model. The simulation results show that with the increase of the velocity, the natural frequencies of each mode of the pipeline decrease continuously. When the first frequency is zero, the pipeline buckling occurs and the velocity reaches the critical velocity; the elastic coefficient and shear coefficient in the foundation coefficient are positively related to the stability of the pipeline system. The damping coefficient is negatively related to pipeline stability.


Author(s):  
K. D. Gupta ◽  
K. Gupta ◽  
K. Athre

This paper presents a general formulation for the stability problem of a linear model of dual rotor system with intershaft bearing(s) employing an ‘extended’ transfer matrix method [9] using complex variables. The stability criterion employed is essentially an extension of leonhard’s stability criterion. An alternative concept of ‘margin of stability’ has been suggested. In contrast to other methods, the present formulation maintains the integrity of dual rotor system in totality, by considering exact junction conditions at intershaft bearing. And it is felt that it would prove to be an potential method for analyzing the stability of complex rotor systems.


2019 ◽  
Vol 39 (2) ◽  
pp. 280-296
Author(s):  
Xian-Zhong Wang ◽  
Quan-Zhou Jiang ◽  
Ye-Ping Xiong ◽  
Xin Gu

An experimental model was made to investigate the influence of force and acoustic excitation on the vibration and underwater sound radiation of the stiffened conical-cylindrical shell. Meanwhile, a coupled precise transfer matrix method and wave superposition method was also proposed to analyze vibro-acoustic responses of combined shells. To test accuracy of the present method, vibration and acoustic results of combined shells are firstly examined. As expected, results of present method are in excellent agreement with the ones in literature and model test. The experimental results show that free vibrations of the experimental test are consistent with the literature data and the present method’s results. Forced vibration and acoustic test results are also well agreed with the numerical results from the coupled precise transfer matrix method/wave superposition method. The comparisons show that the coupled precise transfer matrix method/wave superposition method is reliable and credible to solve the vibro-acoustic response of combined shells. The analysis shows that the acoustic excitation is the key factor for radiated noise in low-frequency range. However, the radiated noise resulted from force excitation is dominant in mid-high frequency band.


Sign in / Sign up

Export Citation Format

Share Document