scholarly journals Local quartic interaction of scalars with higher spin gauge fields and commutator of linear gauge transformations

2021 ◽  
Author(s):  
Ruben Manvelyan ◽  
Melik Karapetyan
2009 ◽  
Vol 06 (02) ◽  
pp. 285-342 ◽  
Author(s):  
XAVIER BEKAERT

The unconstrained frame-like formulation of an infinite tower of completely symmetric tensor gauge fields is reviewed and examined in the limit where the cosmological constant goes to zero. By partially fixing the gauge and solving the torsion constraints, the form of the gauge transformations in the unconstrained metric-like formulation are obtained till first order in a weak field expansion. The algebra of the corresponding gauge symmetries is shown to be equivalent, at this order and modulo (unphysical) gauge parameter redefinitions, to the Lie algebra of Hermitian differential operators on ℝn, the restriction of which to the spin-two sector is the Lie algebra of infinitesimal diffeomorphisms.


2003 ◽  
Vol 18 (27) ◽  
pp. 4999-5019 ◽  
Author(s):  
ARKADY Y. SEGAL

Point particle may interact with traceless symmetric tensors of arbitrary rank. Free gauge theories of traceless symmetric tensors are constructed, which provides a possibility for a new type of interactions, when particles exchange by those gauge fields. The gauge theories are parametrized by the particle's mass m and otherwise are unique for each rank s. For m=0, they are local gauge models with actions of 2s th order in derivatives, known in d=4 as "pure spin," or "conformal higher spin" actions by Fradkin and Tseytlin. For m≠0, each rank-s model undergoes a unique nonlocal deformation which entangles fields of all ranks, starting from s. There exists a nonlocal transform which maps m≠0 theories onto m=0 ones, however, this map degenerates at some m≠0 fields whose polarizations are determined by zeros of Bessel functions. Conformal covariance properties of the m=0 models are analyzed, the space of gauge fields is shown to admit an action of an infinite-dimensional "conformal higher spin" Lie algebra which leaves gauge transformations intact.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Cvitan ◽  
P. Dominis Prester ◽  
S. Giaccari ◽  
M. Paulišić ◽  
I. Vuković

Abstract We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by Bonora et al. and Bekaert et al. in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a 2d-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Adrian David ◽  
Yasha Neiman

Abstract We consider higher-spin gravity in (Euclidean) AdS4, dual to a free vector model on the 3d boundary. In the bulk theory, we study the linearized version of the Didenko-Vasiliev black hole solution: a particle that couples to the gauge fields of all spins through a BPS-like pattern of charges. We study the interaction between two such particles at leading order. The sum over spins cancels the UV divergences that occur when the two particles are brought close together, for (almost) any value of the relative velocity. This is a higher-spin enhancement of supergravity’s famous feature, the cancellation of the electric and gravitational forces between two BPS particles at rest. In the holographic context, we point out that these “Didenko-Vasiliev particles” are just the bulk duals of bilocal operators in the boundary theory. For this identification, we use the Penrose transform between bulk fields and twistor functions, together with its holographic dual that relates twistor functions to boundary sources. In the resulting picture, the interaction between two Didenko-Vasiliev particles is just a geodesic Witten diagram that calculates the correlator of two boundary bilocals. We speculate on implications for a possible reformulation of the bulk theory, and for its non-locality issues.


2014 ◽  
Vol 29 (22) ◽  
pp. 1450120 ◽  
Author(s):  
Jong-Ping Hsu

We discuss a confining model for quark–antiquark system with a new color SU3 gauge symmetry. New gauge transformations involve non-integrable phase factors and lead to the fourth-order gauge field equations and a linear potential. The massless gauge bosons have non-definite energies, which are not observable because they are permanently confined in quark systems by the linear potential. We use the empirical potentials of charmonium to determine the coupling strength of the color charge gs and find [Formula: see text]. The rules for Feynman diagrams involve propagators with poles of order 2 associated with new gauge fields. The confining quark model may be renormalizable by power counting and compatible with perturbation theory.


2005 ◽  
Vol 20 (25) ◽  
pp. 5871-5890 ◽  
Author(s):  
A. PINZUL ◽  
A. STERN

We write down three kinds of scale transformations (i)–(iii) on the noncommutative plane. Transformation (i) is the analogue of standard dilations on the plane, transformation (ii) is a rescaling of the noncommutative parameter θ, and transformation (iii) is a combination of the previous two, whereby the defining relations for the noncommutative plane are preserved. The action of the three transformations is defined on gauge fields evaluated at fixed coordinates and θ. The transformations are obtained only up to terms which transform covariantly under gauge transformations. We give possible constraints on these terms. We show how the transformations (i) and (ii) depend on the choice of star product, and show the relation of (ii) to Seiberg–Witten transformations. Because transformation (iii) preserves the fundamental commutation relations it is a symmetry of the algebra. One has the possibility of implementing it as a symmetry of the dynamics, as well, in noncommutative field theories where θ is not fixed.


Sign in / Sign up

Export Citation Format

Share Document