electrical breakdown strength
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8067
Author(s):  
Emre Kantar

One of the most important causes of insulation system failure is the breakdown of the interface between two solid dielectrics; understanding the mechanisms governing this breakdown phenomenon is therefore critical. To that end, investigating and reviewing the practical limitations of the electrical breakdown strength of solid–solid interfaces present in insulating components is the primary objective of this work. The published literature from experimental and theoretical studies carried out in order to scrutinize the effects of the presence of solid–solid interfaces is investigated and discussed, considering macro, micro, and nano-scale characteristics. The reviewed literature suggests that solid–solid interfaces in accessories have non-uniform distributions of electrical fields within them in comparison to cables, where the distribution is mostly radial and symmetrical. Many agree that the elastic modulus (elasticity), radial/tangential pressure, surface smoothness/roughness, and dielectric strength of the ambient environment are the main parameters determining the tangential AC breakdown strength of solid–solid interfaces.


2021 ◽  
Vol 130 (14) ◽  
pp. 144101
Author(s):  
Jeffrey X. Zheng ◽  
Dixiong Wang ◽  
Pariasadat Musavigharavi ◽  
Merrilyn Mercy Adzo Fiagbenu ◽  
Deep Jariwala ◽  
...  

2020 ◽  
Vol 34 ◽  
pp. 100583 ◽  
Author(s):  
Jianyou Zhou ◽  
Liying Jiang ◽  
Shengqiang Cai

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3562 ◽  
Author(s):  
Chang Liu ◽  
Yiwen Xu ◽  
Daoguang Bi ◽  
Bing Luo ◽  
Fuzeng Zhang ◽  
...  

AlN nanoparticles were added into commercial high-temperature-vulcanized silicon rubber composites, which were designed for high-voltage outdoor insulator applications. The composites were systematically studied with respect to their mechanical, electrical, and thermal properties. The thermal conductivity was found to increase greatly (>100%) even at low fractions of the AlN fillers. The electrical breakdown strength of the composites was not considerably affected by the AlN filler, while the dielectric constants and dielectric loss were found to be increased with AlN filler ratios. At higher doping levels above 5 wt% (~2.5 vol%), electrical tracking performance was improved. The AlN filler increased the tensile strength as well as the hardness of the composites, and decreased their flexibility. The hydrophobic properties of the composites were also studied through the measurements of temperature-dependent contact angle. It was shown that at a doping level of 1 wt%, a maximum contact angle was observed around 108°. Theoretical models were used to explain and understand the measurement results. Our results show that the AlN nanofillers are helpful in improving the overall performances of silicon rubber composite insulators.


Nano Letters ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 5689-5696 ◽  
Author(s):  
Min-Woo Kim ◽  
Max L. Lifson ◽  
Gallivan A. Rebecca ◽  
Julia R. Greer ◽  
Bong-Joong Kim

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 73448-73454 ◽  
Author(s):  
Suning Liang ◽  
Feipeng Wang ◽  
Zhengyong Huang ◽  
Weigen Chen ◽  
Youyuan Wang ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1207 ◽  
Author(s):  
Daomin Min ◽  
Chenyu Yan ◽  
Rui Mi ◽  
Chao Ma ◽  
Yin Huang ◽  
...  

Dielectric energy storage capacitors have advantages such as ultra-high power density, extremely fast charge and discharge speed, long service lifespan and are significant for pulsed power system, smart power grid, and power electronics. Polypropylene (PP) is one of the most widely used dielectric materials for dielectric energy storage capacitors. It is of interest to investigate how to improve its electrical breakdown strength by nanodoping and the influencing mechanism of nanodoping on the electrical breakdown properties of polymer nanocomposites. PP/Al2O3 nanocomposite dielectric materials with various weight fraction of nanoparticles are fabricated by melt-blending and hot-pressing methods. Thermally stimulated current, surface potential decay, and dc electrical breakdown experiments show that deep trap properties and associated molecular chain motion are changed by incorporating nanofillers into polymer matrix, resulting in the variations in conductivity and dc electrical breakdown field of nanocomposite dielectrics. Then, a charge transport and molecular displacement modulated electrical breakdown model is utilized to simulate the dc electrical breakdown behavior. It is found that isolated interfacial regions formed in nanocomposite dielectrics at relatively low loadings reduce the effective carrier mobility and strengthen the interaction between molecular chains, hindering the transport of charges and the displacement of molecular chains with occupied deep traps. Accordingly, the electrical breakdown strength is enhanced at relatively low loadings. Interfacial regions may overlap in nanocomposite dielectrics at relatively high loadings so that the effective carrier mobility decreases and the interaction between molecular chains may be weakened. Consequently, the molecular motion is accelerated by electric force, leading to the decrease in electrical breakdown strength. The experiments and simulations reveals that the influence of nanodoping on dc electrical breakdown properties may origin from the changes in the charge transport and molecular displacement characteristics caused by interfacial regions in nanocomposite dielectrics.


Sign in / Sign up

Export Citation Format

Share Document