scholarly journals Commissural neuron identity is specified by a homeodomain protein, Mbh1, that is directly downstream of Math1

Development ◽  
2005 ◽  
Vol 132 (9) ◽  
pp. 2147-2155 ◽  
Author(s):  
R. Saba
Author(s):  
Yichen Dai ◽  
Sonia Trigueros ◽  
Peter W. H. Holland

AbstractGerbils are a subfamily of rodents living in arid regions of Asia and Africa. Recent studies have shown that several gerbil species have unusual amino acid changes in the PDX1 protein, a homeodomain transcription factor essential for pancreatic development and β-cell function. These changes were linked to strong GC-bias in the genome that may be caused by GC-biased gene conversion, and it has been hypothesized that this caused accumulation of deleterious changes. Here we use two approaches to examine if the unusual changes are adaptive or deleterious. First, we compare PDX1 protein sequences between 38 rodents to test for association with habitat. We show the PDX1 homeodomain is almost totally conserved in rodents, apart from gerbils, regardless of habitat. Second, we use ectopic gene overexpression and gene editing in cell culture to compare functional properties of PDX1 proteins. We show that the divergent gerbil PDX1 protein inefficiently binds an insulin gene promoter and ineffectively regulates insulin expression in response to high glucose in rat cells. The protein has, however, retained the ability to regulate some other β-cell genes. We suggest that during the evolution of gerbils, the selection-blind process of biased gene conversion pushed fixation of mutations adversely affecting function of a normally conserved homeodomain protein. We argue these changes were not entirely adaptive and may be associated with metabolic disorders in gerbil species on high carbohydrate diets. This unusual pattern of molecular evolution could have had a constraining effect on habitat and diet choice in the gerbil lineage.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 615
Author(s):  
Achala Fernando ◽  
Chamikara Liyanage ◽  
Afshin Moradi ◽  
Panchadsaram Janaththani ◽  
Jyotsna Batra

Alternative splicing (AS) is tightly regulated to maintain genomic stability in humans. However, tumor growth, metastasis and therapy resistance benefit from aberrant RNA splicing. Iroquois-class homeodomain protein 4 (IRX4) is a TALE homeobox transcription factor which has been implicated in prostate cancer (PCa) as a tumor suppressor through genome-wide association studies (GWAS) and functional follow-up studies. In the current study, we characterized 12 IRX4 transcripts in PCa cell lines, including seven novel transcripts by RT-PCR and sequencing. They demonstrate unique expression profiles between androgen-responsive and nonresponsive cell lines. These transcripts were significantly overexpressed in PCa cell lines and the cancer genome atlas program (TCGA) PCa clinical specimens, suggesting their probable involvement in PCa progression. Moreover, a PCa risk-associated SNP rs12653946 genotype GG was corelated with lower IRX4 transcript levels. Using mass spectrometry analysis, we identified two IRX4 protein isoforms (54.4 kDa, 57 kDa) comprising all the functional domains and two novel isoforms (40 kDa, 8.7 kDa) lacking functional domains. These IRX4 isoforms might induce distinct functional programming that could contribute to PCa hallmarks, thus providing novel insights into diagnostic, prognostic and therapeutic significance in PCa management.


2002 ◽  
Vol 28 (3) ◽  
pp. 193-205 ◽  
Author(s):  
J Quirk ◽  
P Brown

The homeobox repressor Hesx1, expressed throughout Rathke's pouch and required for normal pituitary development, has been implicated in anterior pituitary pathogenesis in man. Prolonged expression of Hesx1 delays the appearance of anterior pituitary terminal differentiation markers in mice, particularly the gonadotroph hormones. We tested if Hesx1 could modulate gonadotrophin gene expression directly, and found that Hesx1 repressed both common alpha subunit (alpha GSU) and luteinising hormone beta-subunit (LH beta) gene promoters. Repression mapped to the Pitx1 homeodomain protein transactivation site in the proximal alpha GSU promoter, but did not map to the equivalent site on LH beta. Hesx1 repression of the alpha GSU Pitx1 site was overridden by co-transfection of Pitx1. In contrast, Hesx1 antagonised Pitx1 transactivation of LH beta in a dose-dependent manner. This was due to monomeric binding of Hesx1 on alpha GSU and homodimerisation on LH beta. The homodimerisation site comprises the Pitx1 DNA binding site and a proximal binding site, and mutation of either inhibited homodimer formation. Conversion of the LH beta Pitx1 DNA binding site to an alpha GSU-type did not promote homodimer formation, arguing that Hesx1 has pronounced site selectivity. Furthermore, mutation of the proximal half of the homodimerisation site blocked Hesx1 antagonisation of Pitx1 transactivation. We conclude that Hesx1 monomers repress gene expression, and homodimers block specific transactivation sites.


1999 ◽  
Vol 274 (47) ◽  
pp. 33194-33197 ◽  
Author(s):  
Cheol Yong Choi ◽  
Young Ho Kim ◽  
Ho Jeong Kwon ◽  
Yongsok Kim

Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 655-666 ◽  
Author(s):  
H.T. Broihier ◽  
L.A. Moore ◽  
M. Van Doren ◽  
S. Newman ◽  
R. Lehmann

In Drosophila as well as many vertebrate systems, germ cells form extraembryonically and migrate into the embryo before navigating toward gonadal mesodermal cells. How the gonadal mesoderm attracts migratory germ cells is not understood in any system. We have taken a genetic approach to identify genes required for germ cell migration in Drosophila. Here we describe the role of zfh-1 in germ cell migration to the gonadal mesoderm. In zfh-1 mutant embryos, the initial association of germ cells and gonadal mesoderm is blocked. Loss of zfh-1 activity disrupts the development of two distinct mesodermal populations: the caudal visceral mesoderm and the gonadal mesoderm. We demonstrate that the caudal visceral mesoderm facilitates the migration of germ cells from the endoderm to the mesoderm. Zfh-1 is also expressed in the gonadal mesoderm throughout the development of this tissue. Ectopic expression of Zfh-1 is sufficient to induce additional gonadal mesodermal cells and to alter the temporal course of gene expression within these cells. Finally, through analysis of a tinman zfh-1 double mutant, we show that zfh-1 acts in conjunction with tinman, another homeodomain protein, in the specification of lateral mesodermal derivatives, including the gonadal mesoderm.


Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 349-359 ◽  
Author(s):  
M. Fibi ◽  
B. Zink ◽  
M. Kessel ◽  
A.M. Colberg-Poley ◽  
S. Labeit ◽  
...  

We have characterized Hox 1.3 (previously described as m2), a murine homeobox-containing gene, which is a member of the Hox 1 cluster located on chromosome 6. A cloned cDNA was isolated from an Okayama-Berg library generated from the chemically transformed cell line MB66 MCA ACL6. The protein sequence of 270 amino acids was deduced from the nucleotide sequence of an open reading frame containing the homeobox. The open reading frame is interrupted at the genomic level by a 960 bp intron and is organized in two exons. The Hox 1.3 protein was found to contain extensive sequence homology with the murine homeodomain protein Hox 2.1, which is encoded on chromosome 11. There are two homology with the regions in the first exon, i.e. a hexapeptide conserved in many homeobox-containing genes and the N-terminal domain, which was found to be homologous only to Hox 2.1. Furthermore, in exon 2 the homologies of the homeodomain regions are extended up to the carboxy terminus of Hox 1.3 and Hox 2.1. During prenatal murine development, maximal expression of Hox 1.3 is observed in 12-day embryonic tissue. The two transcripts carrying the Hox 1.3 homeobox are 1.9 kb and about 4 kb in length. An abundant Hox 1.3-specific 1.9 kb RNA is also found in F9 cells which were induced for parietal endoderm differentiation, whereas F9 teratocarcinoma stem cells do not stably express this specific RNA. Induction of the transcript occurs immediately after retinoic acid/cAMP treatment and the RNA level remains high for 5 days. Thus, the kinetics are different from the previously described homeobox transcripts Hox 1.1 and Hox 3.1. Interestingly, by analogy to the F9 cell system a negative correlation between transformation and Hox 1.3 expression is observed in 3T3 fibroblasts also. Untransformed 3T3 cells carry abundant 1.9 kb Hox 1.3 RNA, whereas the methylcholanthrene-transformed MB66 and LTK- cells or 3T3 cells transformed by the oncogenes src, fos or SV40 T antigen express only low levels.


Sign in / Sign up

Export Citation Format

Share Document