charged particle therapy
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 ◽  
Author(s):  
Jacinta Yap ◽  
Andrea De Franco ◽  
Suzie Sheehy

The physical and clinical benefits of charged particle therapy (CPT) are well recognized. However, the availability of CPT and complete exploitation of dosimetric advantages are still limited by high facility costs and technological challenges. There are extensive ongoing efforts to improve upon these, which will lead to greater accessibility, superior delivery, and therefore better treatment outcomes. Yet, the issue of cost remains a primary hurdle as utility of CPT is largely driven by the affordability, complexity and performance of current technology. Modern delivery techniques are necessary but limited by extended treatment times. Several of these aspects can be addressed by developments in the beam delivery system (BDS) which determines the overall shaping and timing capabilities enabling high quality treatments. The energy layer switching time (ELST) is a limiting constraint of the BDS and a determinant of the beam delivery time (BDT), along with the accelerator and other factors. This review evaluates the delivery process in detail, presenting the limitations and developments for the BDS and related accelerator technology, toward decreasing the BDT. As extended BDT impacts motion and has dosimetric implications for treatment, we discuss avenues to minimize the ELST and overview the clinical benefits and feasibility of a large energy acceptance BDS. These developments support the possibility of advanced modalities and faster delivery for a greater range of treatment indications which could also further reduce costs. Further work to realize methodologies such as volumetric rescanning, FLASH, arc, multi-ion and online image guided therapies are discussed. In this review we examine how increased treatment efficiency and efficacy could be achieved with improvements in beam delivery and how this could lead to faster and higher quality treatments for the future of CPT.


Author(s):  
Hiroaki Ikawa ◽  
Taku Inaniwa ◽  
Masashi Koto ◽  
Tapesh Bhattacharyya ◽  
Takashi Kaneko ◽  
...  

AbstractIn this study, the stopping-power ratios (SPRs) of mouthpiece materials were measured and the errors in the predicted SPRs based on conversion table values were further investigated. The SPRs of the five mouthpiece materials were predicted from their computed tomography (CT) numbers using a calibrated conversion table. Independently, the SPRs of the materials were measured from the Bragg peak shift of a carbon-ion beam passing through the materials. The errors in the SPRs of the materials were determined as the difference between the predicted and measured values. The measured SPRs (errors) of the Nipoflex 710™ and Bioplast™ ethylene–vinyl acetate copolymers (EVAs) were 0.997 (0.023) and 0.982 (0.007), respectively. The SPRs of the vinyl silicon impression material, light-curable resin, and bis-acrylic resin were 1.517 (0.134), 1.161 (0.068), and 1.26 (0.101), respectively. Among the five tested materials, the EVAs had the lowest SPR errors, indicating the highest human-tissue equivalency.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4802
Author(s):  
Juliette Thariat ◽  
Florent Carsuzaa ◽  
Pierre Yves Marcy ◽  
Benjamin Verillaud ◽  
Ludovic de Gabory ◽  
...  

Radiotherapy plays an important role in the treatment of sinonasal cancer, mainly in the adjuvant setting after surgical resection. Many technological approaches have been described, including intensity-modulated radiotherapy, concomitant chemoradiotherapy, charged particle therapy or combined approaches. The choice is based on general criteria related to the oncological results and morbidity of each technique and their availability, as well as specific criteria related to the tumor (tumor extensions, pathology and quality of margins). The aims of this review are: (i) to provide an overview of the radiotherapy techniques available for the management of sinonasal malignant tumors and (ii) to describe the constraints and opportunities of radiotherapy owing to the recent developments of endonasal endoscopic surgery. The indication and morbidity of the different techniques will be discussed based on a critical literature review.


2021 ◽  
Vol 50 (5) ◽  
pp. E17
Author(s):  
Zach Pennington ◽  
Jeff Ehresman ◽  
Aladine A. Elsamadicy ◽  
John H. Shin ◽  
C. Rory Goodwin ◽  
...  

OBJECTIVE Long-term local control in patients with primary chordoma and sarcoma of the spine and sacrum is increasingly reliant upon en bloc resection with negative margins. At many institutions, adjuvant radiation is recommended; definitive radiation is also recommended for the treatment of unresectable tumors. Because of the high off-target radiation toxicities associated with conventional radiotherapy, there has been growing interest in the use of proton and heavy-ion therapies. The aim of this study was to systematically review the literature regarding these therapies. METHODS The PubMed, OVID, Embase, and Web of Science databases were queried for articles describing the use of proton, combined proton/photon, or heavy-ion therapies for adjuvant or definitive radiotherapy in patients with primary sarcoma or chordoma of the mobile spine and sacrum. A qualitative synthesis of the results was performed, focusing on overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), and disease-specific survival (DSS); local control; and postradiation toxicities. RESULTS Of 595 unique articles, 64 underwent full-text screening and 38 were included in the final synthesis. All studies were level III or IV evidence with a high risk of bias; there was also significant overlap in the reported populations, with six centers accounting for roughly three-fourths of all reports. Five-year therapy outcomes were as follows: proton-only therapies, OS 67%–82%, PFS 31%–57%, and DFS 52%–62%; metastases occurred in 17%–18% and acute toxicities in 3%–100% of cases; combined proton/photon therapy, local control 62%–85%, OS 78%–87%, PFS 90%, and DFS 61%–72%; metastases occurred in 12%–14% and acute toxicities in 84%–100% of cases; and carbon ion therapy, local control 53%–100%, OS 52%–86%, PFS (only reported for 3 years) 48%–76%, and DFS 50%–53%; metastases occurred in 2%–39% and acute toxicities in 26%–48%. There were no studies directly comparing outcomes between photon and charged-particle therapies or comparing outcomes between radiation and surgical groups. CONCLUSIONS The current evidence for charged-particle therapies in the management of sarcomas of the spine and sacrum is limited. Preliminary evidence suggests that with these therapies local control and OS at 5 years are comparable among various charged-particle options and may be similar between those treated with definitive charged-particle therapy and historical surgical cohorts. Further research directly comparing charged-particle and photon-based therapies is necessary.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 383-394
Author(s):  
Giuliana Galati ◽  
Andrey Alexandrov ◽  
Behcet Alpat ◽  
Giovanni Ambrosi ◽  
Stefano Argirò ◽  
...  

Abstract The FOOT (FragmentatiOn Of Target) experiment is an international project designed to carry out the fragmentation cross-sectional measurements relevant for charged particle therapy (CPT), a technique based on the use of charged particle beams for the treatment of deep-seated tumors. The FOOT detector consists of an electronic setup for the identification of Z ≥ 3 Z\ge 3 fragments and an emulsion spectrometer for Z ≤ 3 Z\le 3 fragments. The first data taking was performed in 2019 at the GSI facility (Darmstadt, Germany). In this study, the charge identification of fragments induced by exposing an emulsion detector, embedding a C 2 H 4 {{\rm{C}}}_{2}{{\rm{H}}}_{4} target, to an oxygen ion beam of 200 MeV/n is discussed. The charge identification is based on the controlled fading of nuclear emulsions in order to extend their dynamic range in the ionization response.


Sign in / Sign up

Export Citation Format

Share Document