bistable potential
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 95 (1) ◽  
Author(s):  
F. Naha Nzoupe ◽  
Alain M. Dikandé ◽  
S. E. Mkam Tchouobiap

Abstract We consider a one-dimensional system of interacting particles (which can be atoms, molecules, ions, etc.), in which particles are subjected to a bistable potential the double-well shape of which is tunable via a shape deformability parameter. Our objective is to examine the impact of shape deformability on the order of transition in quantum tunneling in the bistable system, and on the possible existence of exact solutions to the transfer-integral operator associated with the partition function of the system. The bistable potential is represented by a class composed of three families of parametrized double-well potentials, whose minima and barrier height can be tuned distinctly. It is found that the extra degree of freedom, introduced by the shape deformability parameter, favors a first-order transition in quantum tunneling, in addition to the second-order transition predicted with the $$\phi ^4$$ ϕ 4 model. This first-order transition in quantum tunneling, which is consistent with Chudnovsky’s conjecture of the influence of the shape of the potential barrier on the order of thermally assisted transitions in bistable systems, is shown to occur at a critical value of the shape-deformability parameter which is the same for the three families of parametrized double-well potentials. Concerning the statistical mechanics of the system, the associate partition function is mapped onto a spectral problem by means of the transfer-integral formalism. The condition that the partition function can be exactly integrable, is determined by a criterion enabling exact eigenvalues and eigenfunctions for the transfer-integral operator. Analytical expressions of some of these exact eigenvalues and eigenfunctions are given, and the corresponding ground-state wavefunctions are used to compute the probability density which is relevant for calculations of thermodynamic quantities such as the correlation functions and the correlation lengths. Graphic Abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Militaru ◽  
M. Innerbichler ◽  
M. Frimmer ◽  
F. Tebbenjohanns ◽  
L. Novotny ◽  
...  

AbstractRare transitions between long-lived metastable states underlie a great variety of physical, chemical and biological processes. Our quantitative understanding of reactive mechanisms has been driven forward by the insights of transition state theory and in particular by Kramers’ dynamical framework. Its predictions, however, do not apply to systems that feature non-conservative forces or correlated noise histories. An important class of such systems are active particles, prominent in both biology and nanotechnology. Here, we study the active escape dynamics of a silica nanoparticle trapped in a bistable potential. We introduce activity by applying an engineered stochastic force that emulates self-propulsion. Our experiments, supported by a theoretical analysis, reveal the existence of an optimal correlation time that maximises the transition rate. We discuss the origins of this active turnover, reminiscent of the much celebrated Kramers turnover. Our work establishes a versatile experimental platform to study single particle dynamics in non-equilibrium settings.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. R. Ramos Ramos ◽  
O. Kühn

Optimal control theory is usually formulated as an indirect method requiring the solution of a two-point boundary value problem. Practically, the solution is obtained by iterative forward and backward propagation of quantum wavepackets. Here, we propose direct optimal control as a robust and flexible alternative. It is based on a discretization of the dynamical equations resulting in a nonlinear optimization problem. The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential. The wavepacket is parameterized in terms of a single Gaussian function and field optimization is performed for a wide range of particle masses and lengths of the control interval. Using the optimized field in a full quantum propagation still yields reasonable control yields for most of the considered cases. Analysis of the deviations leads to conditions which have to be fulfilled to make the semiclassical single Gaussian approximation meaningful for field optimization.


2020 ◽  
Vol 101 (6) ◽  
Author(s):  
Miguel V. Moreno ◽  
Daniel G. Barci ◽  
Zochil González Arenas

2020 ◽  
Vol 69 (6) ◽  
pp. 060501
Author(s):  
Peng Wang ◽  
Feng-Chun Pan ◽  
Jing-Jing Guo ◽  
Ting-Ting Li ◽  
Xu-Ming Wang

Sign in / Sign up

Export Citation Format

Share Document