indolic glucosinolates
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Abinaya Manivannan ◽  
Bhawana Israni ◽  
Katrin Luck ◽  
Monika Götz ◽  
Elena Seibel ◽  
...  

Cruciferous plants in the order Brassicales defend themselves from herbivory using glucosinolates: sulfur-containing pro-toxic metabolites that are activated by hydrolysis to form compounds, such as isothiocyanates, which are toxic to insects and other organisms. Some herbivores are known to circumvent glucosinolate activation with glucosinolate sulfatases (GSSs), enzymes that convert glucosinolates into inactive desulfoglucosinolates. This strategy is a major glucosinolate detoxification pathway in a phloem-feeding insect, the silverleaf whitefly Bemisia tabaci, a serious agricultural pest of cruciferous vegetables. In this study, we identified and characterized an enzyme responsible for glucosinolate desulfation in the globally distributed B. tabaci species MEAM1. In in vitro assays, this sulfatase showed a clear preference for indolic glucosinolates compared with aliphatic glucosinolates, consistent with the greater representation of desulfated indolic glucosinolates in honeydew. B. tabaci might use this detoxification strategy specifically against indolic glucosinolates since plants may preferentially deploy indolic glucosinolates against phloem-feeding insects. In vivo silencing of the expression of the B. tabaci GSS gene via RNA interference led to lower levels of desulfoglucosinolates in honeydew. Our findings expand the knowledge on the biochemistry of glucosinolate detoxification in phloem-feeding insects and suggest how detoxification pathways might facilitate plant colonization in a generalist herbivore.


2019 ◽  
Author(s):  
kaixuan Zhang ◽  
Yu Meng ◽  
Jinbo Li ◽  
Mengqi Ding ◽  
Muhammad Khurshid ◽  
...  

SummaryJasmonates (JAs) are plant hormones which regulate biosynthesis of many secondary metabolites, such as glucosinolates (GLSs), through JAs-responsive transcription factors (TFs). The JAs-responsive CYP83B1 gene, has been shown to catalyze the conversion of indole-3-acetaldoxime (IAOx) to indolic glucosinolates (IGLSs). However, little is known about the regulatory mechanism of CYP83B1 gene expression by JAs. In yeast one-hybrid screens using the CYP83B1 promoter as bait we isolated two JAs-responsive TFs ERF109 and MYB51 that are involved in JAs-regulated IGLS biosynthesis. Furthermore, using a yeast two-hybrid assay, we identified ERF109 as an interacting partner of MYB51, and Jasmonate ZIM-domain (JAZ) proteins as interactors of MYB51, and BTB/POZ-MATH (BPM) proteins as interactors of ERF109. Both JAZ and BPM proteins are necessary for the full repression of the ERF109-MYB51-MYC3 ternary complex activity on CYP83B1 gene expression and JA-regulated IGLS biosynthesis. Biochemical analysis showed that the 26S proteasome-mediated degradation of ERF109 protein is mediated by a CRL3BPM E3 ligase independently of JA signaling. Genetic and physiological evidence shows that MYB51 acts as an adaptor and activator to bridge the interaction with the co-activators MYC3 and ERF109, for synergistically activating the CYP83B1 gene expression, and all three factors are essential and exert a coordinated control in JAs-induced IGLS biosynthesis. Overall, this study provides insights into the molecular mechanisms of JAs-responsive ERF109-MYB51-MYC3 ternary complexes in controlling JAs-regulated GLSs biosynthesis, which provides a better understanding of plant secondary metabolism.One-sentence summaryThe JA-responsive ERF109-MYB51-MYC3 ternary complex controls JAs-regulated GLSs biosynthesis.


2012 ◽  
Vol 60 (35) ◽  
pp. 8648-8658 ◽  
Author(s):  
Sara Izquierdo Zandalinas ◽  
Vicente Vives-Peris ◽  
Aurelio Gómez-Cadenas ◽  
Vicent Arbona

2008 ◽  
Vol 8 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Judith Bender ◽  
John L. Celenza

Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 359-370 ◽  
Author(s):  
Daniel J Kliebenstein ◽  
Jonathan Gershenzon ◽  
Thomas Mitchell-Olds

Abstract Secondary metabolites are a diverse set of plant compounds believed to have numerous functions in plant-environment interactions. Despite this importance, little is known about the regulation of secondary metabolite accumulation. We are studying the regulation of glucosinolates, a large group of secondary metabolites, in Arabidopsis to investigate how secondary metabolism is controlled. We utilized Ler and Cvi, two ecotypes of Arabidopsis that have striking differences in both the types and amounts of glucosinolates that accumulate in the seeds and leaves. QTL analysis identified six loci determining total aliphatic glucosinolate accumulation, six loci controlling total indolic glucosinolate concentration, and three loci regulating benzylic glucosinolate levels. Our results show that two of the loci controlling total aliphatic glucosinolates map to biosynthetic loci that interact epistatically to regulate aliphatic glucosinolate accumulation. In addition to the six loci regulating total indolic glucosinolate concentration, mapping of QTL for the individual indolic glucosinolates identified five additional loci that were specific to subsets of the indolic glucosinolates. These data show that there are a large number of variable loci controlling glucosinolate accumulation in Arabidopsis thaliana.


Sign in / Sign up

Export Citation Format

Share Document