scholarly journals Jasmonate-regulated ERF109-MYB51-MYC3 ternary complexes control indolic glucosinolates biosynthesis

2019 ◽  
Author(s):  
kaixuan Zhang ◽  
Yu Meng ◽  
Jinbo Li ◽  
Mengqi Ding ◽  
Muhammad Khurshid ◽  
...  

SummaryJasmonates (JAs) are plant hormones which regulate biosynthesis of many secondary metabolites, such as glucosinolates (GLSs), through JAs-responsive transcription factors (TFs). The JAs-responsive CYP83B1 gene, has been shown to catalyze the conversion of indole-3-acetaldoxime (IAOx) to indolic glucosinolates (IGLSs). However, little is known about the regulatory mechanism of CYP83B1 gene expression by JAs. In yeast one-hybrid screens using the CYP83B1 promoter as bait we isolated two JAs-responsive TFs ERF109 and MYB51 that are involved in JAs-regulated IGLS biosynthesis. Furthermore, using a yeast two-hybrid assay, we identified ERF109 as an interacting partner of MYB51, and Jasmonate ZIM-domain (JAZ) proteins as interactors of MYB51, and BTB/POZ-MATH (BPM) proteins as interactors of ERF109. Both JAZ and BPM proteins are necessary for the full repression of the ERF109-MYB51-MYC3 ternary complex activity on CYP83B1 gene expression and JA-regulated IGLS biosynthesis. Biochemical analysis showed that the 26S proteasome-mediated degradation of ERF109 protein is mediated by a CRL3BPM E3 ligase independently of JA signaling. Genetic and physiological evidence shows that MYB51 acts as an adaptor and activator to bridge the interaction with the co-activators MYC3 and ERF109, for synergistically activating the CYP83B1 gene expression, and all three factors are essential and exert a coordinated control in JAs-induced IGLS biosynthesis. Overall, this study provides insights into the molecular mechanisms of JAs-responsive ERF109-MYB51-MYC3 ternary complexes in controlling JAs-regulated GLSs biosynthesis, which provides a better understanding of plant secondary metabolism.One-sentence summaryThe JA-responsive ERF109-MYB51-MYC3 ternary complex controls JAs-regulated GLSs biosynthesis.

2010 ◽  
Vol 30 (21) ◽  
pp. 5071-5085 ◽  
Author(s):  
Helen Yu ◽  
Nazar Mashtalir ◽  
Salima Daou ◽  
Ian Hammond-Martel ◽  
Julie Ross ◽  
...  

ABSTRACT The candidate tumor suppressor BAP1 is a deubiquitinating enzyme (DUB) involved in the regulation of cell proliferation, although the molecular mechanisms governing its function remain poorly defined. BAP1 was recently shown to interact with and deubiquitinate the transcriptional regulator host cell factor 1 (HCF-1). Here we show that BAP1 assembles multiprotein complexes containing numerous transcription factors and cofactors, including HCF-1 and the transcription factor Yin Yang 1 (YY1). Through its coiled-coil motif, BAP1 directly interacts with the zinc fingers of YY1. Moreover, HCF-1 interacts with the middle region of YY1 encompassing the glycine-lysine-rich domain and is essential for the formation of a ternary complex with YY1 and BAP1 in vivo. BAP1 activates transcription in an enzymatic-activity-dependent manner and regulates the expression of a variety of genes involved in numerous cellular processes. We further show that BAP1 and HCF-1 are recruited by YY1 to the promoter of the cox7c gene, which encodes a mitochondrial protein used here as a model of BAP1-activated gene expression. Our findings (i) establish a direct link between BAP1 and the transcriptional control of genes regulating cell growth and proliferation and (ii) shed light on a novel mechanism of transcription regulation involving ubiquitin signaling.


2019 ◽  
Vol 20 (23) ◽  
pp. 6038 ◽  
Author(s):  
Xiaobing Wang ◽  
Xiuzhen Chen ◽  
Liting Zhong ◽  
Xuanxuan Zhou ◽  
Yun Tang ◽  
...  

The JASMONATE ZIM DOMAIN (JAZ) proteins act as negative regulators in the jasmonic acid (JA) signaling pathways of plants, and these proteins have been reported to play key roles in plant secondary metabolism mediated by JA. In this study, we firstly isolated one JAZ from P. cablin, PatJAZ6, which was characterized and revealed based on multiple alignments and a phylogenic tree analysis. The result of subcellular localization indicated that the PatJAZ6 protein was located in the nucleus of plant protoplasts. The expression level of PatJAZ6 was significantly induced by the methyl jasmonate (MeJA). Furthermore, by means of yeast two-hybrid screening, we identified two transcription factors that interact with the PatJAZ6, the PatMYC2b1 and PatMYC2b2. Virus-induced gene silencing (VIGS) of PatJAZ6 caused a decrease in expression abundance, resulting in a significant increase in the accumulation of patchouli alcohol. Moreover, we overexpressed PatJAZ6 in P. cablin, which down-regulated the patchoulol synthase expression, and then suppressed the biosynthesis of patchouli alcohol. The results demonstrate that PatJAZ6 probably acts as a repressor in the regulation of patchouli alcohol biosynthesis, contributed to a model proposed for the potential JA signaling pathway in P. cablin.


2015 ◽  
Vol 3 (5) ◽  
pp. 764-770 ◽  
Author(s):  
Ryuta Aono ◽  
Kenta Nomura ◽  
Eiji Yuba ◽  
Atsushi Harada ◽  
Kenji Kono

The compaction of the nanofiber-polyplexes by mixing with cationic lipofectamine can improve cellular uptake and helps the ternary complex to retain its smooth transcription/translation process, and ternary complexes exhibit a high transfection efficiency.


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


1993 ◽  
Vol 58 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Mohamed M. Shoukry ◽  
Eman M. Shoukry

The formation constants of the binary and ternary complexes of palladium(II) with diethylenetriamine and amino acids as ligands have been determined potentiometrically at 25 °C in 0.1 M NaNO3 solution. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of ∆logK values. The mode of chelation was ascertained by conductivity measurements.


2020 ◽  
Vol 31 (4) ◽  
pp. 716-730 ◽  
Author(s):  
Marc Johnsen ◽  
Torsten Kubacki ◽  
Assa Yeroslaviz ◽  
Martin Richard Späth ◽  
Jannis Mörsdorf ◽  
...  

BackgroundAlthough AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance.MethodsTo identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury.ResultsThe gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI.ConclusionsThis comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).


2021 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Hana Votavova ◽  
Zuzana Urbanova ◽  
David Kundrat ◽  
Michaela Dostalova Merkerova ◽  
Martin Vostry ◽  
...  

Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

AbstractChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.


RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3390-3398
Author(s):  
S. Mallik ◽  
R. Prasad ◽  
K. Das ◽  
P. Sen

Cell-surface sphingomyelin (SM) inhibits binary and ternary complex activity of blood coagulation.


Sign in / Sign up

Export Citation Format

Share Document