microprocessor complex
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

FEBS Letters ◽  
2021 ◽  
Author(s):  
Guan‐Ru Liao ◽  
Yeu‐Yang Tseng ◽  
Ching‐Yu Tseng ◽  
Chen‐Yu Lo ◽  
Wei‐Li Hsu

2021 ◽  
Vol 4 (7) ◽  
pp. e202101038
Author(s):  
Hossein Tabatabaeian ◽  
Shen Kiat Lim ◽  
Tinghine Chu ◽  
Sock Hong Seah ◽  
Yoon Pin Lim

WBP2 is an emerging oncoprotein with diverse functions in breast tumorigenesis via regulating Wnt, epidermal growth factor receptor, estrogen receptor, and Hippo. Recently, evidence shows that WBP2 is tightly regulated by the components of the miRNA biogenesis machinery such as DGCR8 and Dicer via producing both WBP2’s 3′UTR and coding DNA sequence-targeting miRNAs. This led us to hypothesize that WBP2 could provide a feedback loop to the biogenesis of its key upstream regulators by regulating the microprocessor complex activity. Indeed, WBP2 suppressed microprocessor activity by blocking the processing of pri-miRNAs to pre-miRNAs. WBP2 negatively regulated the assembly of the microprocessor complex via physical interactions with its components. Meta-analyses suggest that microprocessor complex components, in particular DGCR8, DDX5, and DEAD-Box Helicase17 (DDX17), have tumor-suppressive properties. 2D and 3D in vitro proliferation assays revealed that WBP2 blocked the tumor-suppressive properties of DGCR8, a key component of the microprocessor complex. In conclusion, WBP2 is a novel regulator of miRNA biogenesis that is a known dysregulated pathway in breast tumorigenesis. The reregulation of miRNA biogenesis machinery via targeting WBP2 protein may have implications in breast cancer therapy.


2021 ◽  
Vol 14 (671) ◽  
pp. eabd2639
Author(s):  
Xuan Jiang ◽  
Amit Prabhakar ◽  
Stephanie M. Van der Voorn ◽  
Prajakta Ghatpande ◽  
Barbara Celona ◽  
...  

Ribosome biogenesis in eukaryotes requires the coordinated production and assembly of 80 ribosomal proteins and four ribosomal RNAs (rRNAs), and its rate must be synchronized with cellular growth. Here, we showed that the Microprocessor complex, which mediates the first step of microRNA processing, potentiated the transcription of ribosomal protein genes by eliminating DNA/RNA hybrids known as R-loops. Nutrient deprivation triggered the nuclear export of Drosha, a key component of the Microprocessor complex, and its subsequent degradation by the E3 ubiquitin ligase Nedd4, thereby reducing ribosomal protein production and protein synthesis. In mouse erythroid progenitors, conditional deletion of Drosha led to the reduced production of ribosomal proteins, translational inhibition of the mRNA encoding the erythroid transcription factor Gata1, and impaired erythropoiesis. This phenotype mirrored the clinical presentation of human “ribosomopathies.” Thus, the Microprocessor complex plays a pivotal role in synchronizing protein synthesis capacity with cellular growth rate and is a potential drug target for anemias caused by ribosomal insufficiency.


Biology Open ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. bio054619
Author(s):  
Douglas M. McLaurin ◽  
Madelyn K. Logan ◽  
Katheryn E. Lett ◽  
Michael D. Hebert

ABSTRACTThe Cajal body (CB) is a subnuclear domain that participates in the biogenesis of many different types of ribonucleoproteins (RNPs), including small nuclear RNPs (snRNPs), small Cajal body-specific RNPs (scaRNPs) and telomerase. Most scaRNAs, the RNA component of scaRNPs, accumulate in CBs. However, there are three scaRNAs (scaRNA 2, 9, and 17) that are known to be processed into small, nucleolar-enriched fragments. Evidence suggests that these fragments are packaged into a new class of RNPs, called regulatory RNPs (regRNPs), and may modify small nucleolar RNP (snoRNP) activity, thus playing a role in rRNA modification. However, the mechanism by which these fragments are produced is unknown. Previous work has reported the involvement of Drosha and DGCR8 in the cleavage of primary-scaRNA9. Here, we expand on that knowledge by identifying sequence elements necessary for the efficient production of these RNA fragments and demonstrate that primary scaRNA 2 and 17 are also processed by the Drosha-DGCR8 complex. Collectively, our work establishes new factors in the scaRNP biogenesis pathway and adds to the ever-expanding list of noncanonical functions for the microprocessor complex.


RNA ◽  
2020 ◽  
Vol 26 (11) ◽  
pp. 1603-1620 ◽  
Author(s):  
Qinyu Sun ◽  
Qinyu Hao ◽  
Yo-Chuen Lin ◽  
You Jin Song ◽  
Sushant Bangru ◽  
...  

2020 ◽  
Author(s):  
S. Chul Kwon ◽  
Harim Jang ◽  
Jihye Yang ◽  
Jeesoo Kim ◽  
S. Chan Baek ◽  
...  

ABSTRACTThe Microprocessor complex cleaves the primary transcript of microRNA (pri-miRNA) to initiate miRNA maturation. Microprocessor is known to consist of RNase III DROSHA and dsRNA-binding DGCR8. Here we identify Enhancer of Rudimentary Homolog (ERH) as a new component of the Microprocessor. ERH binds to a conserved region in the N-terminus of DGCR8. Knockdown of ERH or deletion of the DGCR8 N-terminus results in a decrease of processing of primary miRNAs with suboptimal hairpin structures that reside in polycistronic miRNA clusters. ERH increases the processing of suboptimal pri-miR-451 in a manner dependent on its neighboring pri-miR-144. Thus, the ERH dimer may mediate “cluster assistance” in which the Microprocessor is loaded onto a poor substrate with help from a high-affinity substrate in the same cluster. Our study reveals a role of ERH in the miRNA pathway.


2020 ◽  
Author(s):  
Xuan Jiang ◽  
Amit Prabhakar ◽  
Stephanie M. Van der Voorn ◽  
Prajakta Ghatpande ◽  
Barbara Celona ◽  
...  

AbstractRibosome biogenesis in eukaryotes requires stoichiometric production and assembly of 80 ribosomal proteins (RPs) and 4 ribosomal RNAs, and its rate must be coordinated with cellular growth. The indispensable regulator of RP biosynthesis is the 5’-terminal oligopyrimidine (TOP) motif, spanning the transcription start site of all RP genes. Here we show that the Microprocessor complex, previously linked to the first step of processing microRNAs (miRNAs), coregulates RP expression by binding the TOP motif of nascent RP mRNAs and stimulating transcription elongation via resolution of DNA/RNA hybrids. Cell growth arrest triggers nuclear export and degradation of the Microprocessor protein Drosha by the E3 ubiquitin ligase Nedd4, accumulation of DNA/RNA hybrids at RP gene loci, decreased RP synthesis, and ribosome deficiency, hence synchronizing ribosome production with cell growth. Conditional deletion of Drosha in erythroid progenitors phenocopies human ribosomopathies, in which ribosomal insufficiency leads to anemia. Outlining a miRNA-independent role of the Microprocessor complex at the interphase between cell growth and ribosome biogenesis offers a new paradigm by which cells alter their protein biosynthetic capacity and cellular metabolism.


2020 ◽  
Vol 48 (5) ◽  
pp. 2579-2593 ◽  
Author(s):  
Thuy Linh Nguyen ◽  
Trung Duc Nguyen ◽  
Sheng Bao ◽  
Shaohua Li ◽  
Tuan Anh Nguyen

Abstract The human Microprocessor complex cleaves primary microRNA (miRNA) transcripts (pri-miRNAs) to initiate miRNA synthesis. Microprocessor consists of DROSHA (an RNase III enzyme), and DGCR8. DROSHA contains two RNase III domains, RIIIDa and RIIIDb, which simultaneously cleave the 3p- and 5p-strands of pri-miRNAs, respectively. In this study, we show that the internal loop located in the lower stem of numerous pri-miRNAs selectively inhibits the cleavage of Microprocessor on their 3p-strand, thereby, facilitating the single cleavage on their 5p-strand. This single cleavage does not lead to the production of miRNA but instead, it downregulates miRNA expression. We also demonstrate that by manipulating the size of the internal loop in the lower stem of pri-miRNAs, we can alter the ratio of single-cut to double-cut products resulted from the catalysis of Microprocessor, thus changing miRNA production in the in vitro pri-miRNA processing assays and in human cells. Therefore, the oscillating level of the single cleavage suggests another way of regulation of miRNA expression and offers an alternative approach to miRNA knockdown.


Sign in / Sign up

Export Citation Format

Share Document