cyanex 923
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 27)

H-INDEX

36
(FIVE YEARS 4)

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 991
Author(s):  
Francisco J. Alguacil ◽  
Félix A. Lopez

In this paper, the transport of iron(III) from iron(III)-manganese(II)-hydrochloric acid mixed solutions, coming from the treatment of spent alkaline batteries through a flat-sheet supported liquid membrane, is investigated (the carrier phase being of Cyanex 923 (commercially available phosphine oxide extractant) dissolved in Solvesso 100 (commercially available diluent)). Iron(III) transport is studied as a function of hydrodynamic conditions, the concentration of manganese and HCl in the feed phase, and the carrier concentration in the membrane phase. A transport model is derived that describes the transport mechanism, consisting of diffusion through a feed aqueous diffusion layer, a fast interfacial chemical reaction, and diffusion of the iron(III) species-Cyanex 923 complex across the membrane phase. The membrane diffusional resistance (Δm) and feed diffusional resistance (Δf) are calculated from the model, and their values are 145 s/cm and 361 s/cm, respectively. It is apparent that the transport of iron(III) is mainly controlled by diffusion through the aqueous feed boundary layer, this being the thickness of this layer calculated as 2.9 × 10−3 cm. Since manganese(II) is not transported through the membrane phase, the present system allows the purification of these manganese-bearing solutions.


Author(s):  
Francisco J. Alguacil ◽  
Félix A. Lopez

The transport of iron(III) from Fe(III)-Mn(II)-HCl mixed solutions through a flat-sheet supported liquid membrane is investigated, being the carrier phase of Cyanex 923 (commercially available phosphine oxide extractant) dissolved in Solvesso 100 (commercially available diluent), as a function of hydrodynamic conditions, concentration of manganese and HCl in the feed phase, and carrier concentration in the membrane phase. A transport model is derived that describes the transport mechanism, consisting of diffusion through a feed aqueous diffusion layer, a fast interfacial chemical reaction, and diffusion of the Fe(III)-Cyanex 923 complex across the membrane phase. The membrane diffusional resistance (Δm) and feed diffusional resistance (Δf) are calculated from the model, and their values are 145 s/cm and 361 s/cm, respectively. It is apparent that the transport of iron(III) is mainly controlled by diffusion through the aqueous feed boundary layer, being the thickness of this layer calculated as 2.9x10-3 cm. Since Mn(II) is not transported through the membrane phase, the present system allows to the purification of this manganese-bearing solutions.


Author(s):  
Hany Lotfy Weheish ◽  
Sherien Hussien Ahmed ◽  
Abdou Ali Abdou ◽  
Ahmed Hussien Orabi ◽  
Wagiha Hamed Mahmoud

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed F. Attallah ◽  
Ahmed M. Shahr El-Din ◽  
Mohamed A. Gizawy ◽  
Amal M. I. Ali

Abstract Production of no carrier-added (NCA) 199Au through natPt(n, γ) reaction and subsequent purification using liquid-liquid extraction from other radioisotopes is studied in the context of theranostic application. Comparative separation of NCA 199Au after dissolution of activated Pt target using three Cyanex compounds (Cyanex-272, Cyanex-302 and Cyanex-923) is evaluated. The extraction process is optimized in terms of the type of extractant, the concentration of extractant, extraction time and aqueous media (HNO3, NH4OH). Among these extractants, the Cynaex-923 is efficient and promising for rapid separation and production of NCA 199Au from HNO3 by high extraction %. Selective extraction of 199Au from other Pt and Ir radioisotopes is observed. High recovery of 199Au was obtained in the case of Cyanex-923 using 0.05 M thiourea dissolved in HCl or 2 M NaOH. Our results find the Cyanex-923 as a promising extractant for efficient separation of 199Au from irradiated Pt target with high yield (99%).


RSC Advances ◽  
2021 ◽  
Vol 11 (62) ◽  
pp. 39233-39244
Author(s):  
Zeinab F. Akl

A Fe3O4@Cyanex-923 nanoadsorbent was prepared and applied as an efficient candidate for uranium(vi) removal from aqueous solutions.


2021 ◽  
Vol 221 ◽  
pp. 176-184
Author(s):  
Ma. Elena Páez-Hernández ◽  
Carlos A. Galán-Vidal ◽  
I.S. Ibarra ◽  
Prisciliano Hernández ◽  
I.S. Ibarra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document