oxalate precipitation
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1095
Author(s):  
Ang Tian ◽  
Tengda Ma ◽  
Xiaoguo Shi ◽  
Dixiang Wang ◽  
Wenyuan Wu ◽  
...  

Benefitting from a suitable band gap, ceria is an excellent material for UV shielding. By solid solution doping and specific micromorphology, its band gap can be effectively controlled. In this paper, ceria doped with lanthanum via oxalate precipitation is combined with a high-temperature roasting process. The properties of the prepared samples are characterized by UV–Vis diffuse reflectance spectroscopy (DRS), Raman, XRD, FESEM and XPS. The absorption threshold of materials is clearly red-shifted in the ultraviolet band, which originates from the electron-phonon generation. To further reveal the mechanism, the density function theory calculation (DFT) is implemented to study the influence of lanthanum concentrations on ceria’s band gap. It is demonstrated that the band gap can even be narrowed to 2.97 eV by optimizing the sintering temperature and lanthanum-doped concentration. To investigate its improved anti-aging properties under ultraviolet rays, different amounts of 5% lanthanum-doped ceria is mixed with an Al-based coating and then coated on the Q235 steel. Combined with an ultraviolet light irradiation experiment and electrochemical test technology, the corrosion resistance of the modified coatings is evaluated. The coating with 20% La-doped ceria provides the best corrosion resistance performance.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1369
Author(s):  
Corradino Sposato ◽  
Enrico Catizzone ◽  
Alessandro Blasi ◽  
Marilena Forte ◽  
Assunta Romanelli ◽  
...  

Rare earth elements (REEs) are strategic materials widely used in different applications from Information and Communication Technologies (ICT) to catalysis, which are expected to grow more in the future. In order to reduce the impact of market price and reduce the environmental effect from soil extraction, recovery/purification strategies should be exploited. This paper presents a combined acid-leaching/oxalate precipitation process to recover lanthanum from spent FCC catalyst using nitric acid. Preferred to hydrochloric and sulphuric acid (preliminary assessed), HNO3 showed a good capability to completely leach lanthanum. The combination with an oxalate precipitation step allowed demonstrating that a highly pure (>98% w/w) lanthanum solid can be recovered, with a neglectable amount of poisoning metals (Ni, V) contained into the spent catalyst. This could open a reliable industrial perspective to recover and purify REE in the view of a sustainable recycling strategy.


2020 ◽  
Vol 20 (6) ◽  
pp. 1213
Author(s):  
Samin Samin ◽  
Suyanti Suyanti ◽  
Susanna Tuning Sunanti ◽  
Wisnu Ari Adi

Synthesis and certification of lanthanum oxide extracted from monazite sand have been carried out. This research aimed to increase the added value of monazite sand and obtain the lanthanum oxide in-house certified reference material (CRM). Synthesis of lanthanum oxide consists of several stages, namely: monazite sand digestion, rare-earth elements hydroxide [REE(OH)3] precipitation, Ce separation, Nd separation, lanthanum oxalate precipitation, and calcination. Certification of lanthanum oxide was carried out by determining the average concentration of the oxides and its uncertainty from the seven accredited laboratories by the ISO 35-2006 statistical method. Two other minerals in the lanthanum oxide analyzed by the XRD method were cerium hydroxide [Ce(OH)3] and neodymium yttrium oxide fluoride (Nd2Y2O3F16). Lanthanum oxide certified contains ten oxides, with the two highest concentrations of La2O3 (91.662 ± 0.007)% and Nd2O3 (3.949 ± 0.002)%. Lanthanum oxide has met the qualification in-house CRM since it contained water less than 1%, was homogeneous, stable, and certified. La2O3 concentration in the lanthanum oxide in-house CRM from CSAT-BATAN, Indonesia was not significantly different in comparison to that from the Department of Chemical Engineering, Srinakharinwirot University, Thailand. Lanthanum oxide extracted from monazite sand can be used as reference material in determining the lanthanum oxide quality from the pilot plant process.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 712
Author(s):  
Harry Watts ◽  
Yee-Kwong Leong

Thermodynamic modelling of a leaching system that involves concurrent precipitation depends on an understanding of how the metals distribute into the precipitate before an assessment of solubility can be made. It has been suggested in the past that a pair of rare earths (A and B) in solution will separate from each other by oxalate precipitation according to a logarithmic distribution coefficient (λ), determined by the kinetics of the precipitation. By contrast, the present study hypothesises that λ may be approximated from thermodynamic terms, including the solubility product (KSp) of each rare earth oxalate and the stability constant (β1) for the mono-oxalato complex of each rare earth. The proposed model was used to calculate λ between pairs of rare earths. An experimental study was conducted to determine λ between selected pairs using homogenous precipitation through the hydrolysis of an oxalic acid ester, with fairly close agreement to the values under the proposed model. Though this model requires more thorough testing, as well as application to other organic salts, it may provide insight into distribution factors of a precipitate formed by a sequence of organic complexes.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2802 ◽  
Author(s):  
Beatriz Sisniega ◽  
Ariane Sagasti Sedano ◽  
Jon Gutiérrez ◽  
Alfredo García-Arribas

The magnetoelastic resonance is used to monitor the precipitation reaction of calcium oxalate ( C a C 2 O 4 ) crystals in real-time, by measuring the shift of the resonance frequency caused by the mass increase on the resonator. With respect to previous work on the same matter, the novelty lies in the adoption of an amorphous ferromagnetic alloy, of composition F e 73 C r 5 S i 10 B 12 , as resonator, that replaces the commercial Metglas® 2826 alloy (composition F e 40 N i 38 M o 4 B 18 ). The enhanced corrosion resistance of this material allows it to be used in biological environments without any pre-treatment of its surface. Additionally, the measurement method, which has been specifically adapted to this application, allows quick registration of the whole resonance curve as a function of the excitation frequency, and thus enhances the resolution and decreases the detection noise. The frequency shift is calibrated by the static deposition of well-known masses of C a C 2 O 4 . The resonator dimensions have been selected to improve sensitivity. A 20 mm long, 2 mm wide and 25 μ m thick magnetoelastic resonator has been used to monitor the precipitation reaction of calcium oxalate in a 500 s time interval. The results of the detected precipitated mass when oxalic acid and calcium chloride are mixed in different concentrations (30 mM, 50 mM and 100 mM) are presented as a function of time. The results show that the sensor is capable of monitoring the precipitation reaction. The mass sensitivity obtained, and the corrosion resistance of the material, suggest that this material can perform excellently in monitoring this type of reaction.


2020 ◽  
Vol 74 (10) ◽  
pp. 3279-3291
Author(s):  
Anamarija Stanković ◽  
Silvija Šafranko ◽  
Katarina Jurišić ◽  
Ivana Balić ◽  
Jelena Bijelić ◽  
...  

2020 ◽  
Vol 510 ◽  
pp. 145390
Author(s):  
Kyoung Ryeol Park ◽  
Jae Eun Jeon ◽  
Kangmin Kim ◽  
Nuri Oh ◽  
Yong Ho Ko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document