high temperature sinter
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2011 ◽  
Vol 71-78 ◽  
pp. 2411-2415 ◽  
Author(s):  
Guo Feng Lou ◽  
Zhi Wen ◽  
Xun Xiang Liu ◽  
Xin Zhang ◽  
Kun Chan Zheng ◽  
...  

In the paper, a 1-D unsteady mathematical model for the Gas-Solid heat transfer process of high temperature sinter has been developed, and is used to analyse the cooling process of high temperature sinter. A set of measured data is used to verify the modeling result. The agreement between the measured and the modeling is good. The effect of operation parameters on the cooling process of the annular cooler has been investigated.


2011 ◽  
Vol 71-78 ◽  
pp. 1128-1131 ◽  
Author(s):  
Guo Feng Lou ◽  
Zhi Wen ◽  
Xun Xiang Liu ◽  
Xin Zhang ◽  
Kun Chan Zheng

In the paper, a 1-D unsteady mathematical model is used to analyze the cooling process of high temperature sinter. The modeling result is compared with measured data, and the agreement is good. The effect of sinter particle size and void fraction on the cooling process of the annular cooler has been investigated.


2010 ◽  
Vol 35 (21) ◽  
pp. 11878-11889 ◽  
Author(s):  
Seung-Wook Baek ◽  
Jihoon Jeong ◽  
Jung Hyun Kim ◽  
Changbo Lee ◽  
Joongmyeon Bae

2003 ◽  
Vol 40 (11) ◽  
pp. 1611-1642 ◽  
Author(s):  
Donald R Lowe ◽  
Deena Braunstein

Slightly alkaline hot springs and geysers in Yellowstone National Park exhibit distinctive assemblages of high-temperature (>73 °C) siliceous sinter reflecting local hydrodynamic conditions. The main depositional zones include subaqueous pool and channel bottoms and intermittently wetted subaerial splash, surge, and overflow areas. Subaqueous deposits include particulate siliceous sediment and dendritic and microbial silica framework. Silica framework forms thin, porous, microbe-rich films coating subaqueous surfaces. Spicules with intervening narrow crevices dominate in splash zones. Surge and overflow deposits include pool and channel rims, columns, and knobs. In thin section, subaerial sinter is composed of (i) dark brown, nearly opaque laminated sinter deposited on surfaces that evaporate to dryness; (ii) clear translucent silica deposited subaqueously through precipitation driven by supersaturation; (iii) heterogeneous silica representing silica-encrusted microbial filaments and detritus; and (iv) sinter debris. Brownish laminations form the framework of most sinter deposited in surge and overflow zones. Pits and cavities are common architectural features of subaerial sinter and show concave-upward pseudo-cross-laminations and micro-unconformities developed through migration. Marked birefringence of silica deposited on surfaces that evaporate to dryness is probably a strain effect. Repeated wetting and evaporation, often to dryness, and capillary effects control the deposition, morphology, and microstructure of most high-temperature sinter outside of the fully subaqueous zone. Microbial filaments are abundant on and within high-temperature sinter but do not provide the main controls on morphology or structuring except in biofilms developed on subaqueous surfaces. Millimetre-scale lamination cyclicity in much high-temperature sinter represents annual layering and regular seasonal fluctuations in silica sedimentation.


Sign in / Sign up

Export Citation Format

Share Document