isothermal crystallisation
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
pp. 103094
Author(s):  
Tao Ma ◽  
Peng Song ◽  
Quan Dong ◽  
Jun Tan ◽  
Taihong Huang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3396
Author(s):  
Luboš Běhálek ◽  
Jan Novák ◽  
Pavel Brdlík ◽  
Martin Borůvka ◽  
Jiří Habr ◽  
...  

The physical properties and non-isothermal melt- and cold-crystallisation kinetics of poly (l-lactic acid) (PLLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biobased polymers reprocessed by mechanical milling of moulded specimens and followed injection moulding with up to seven recycling cycles are investigated. Non-isothermal crystallisation kinetics are evaluated by the half-time of crystallisation and a procedure based on the mathematical treatment of DSC cumulative crystallisation curves at their inflection point (Kratochvil-Kelnar method). Thermomechanical recycling of PLLA raised structural changes that resulted in an increase in melt flow properties by up to six times, a decrease in the thermal stability by up to 80 °C, a reduction in the melt half-time crystallisation by up to about 40%, an increase in the melt crystallisation start temperature, and an increase in the maximum melt crystallisation rate (up to 2.7 times). Furthermore, reprocessing after the first recycling cycle caused the elimination of cold crystallisation when cooling at a slow rate. These structural changes also lowered the cold crystallisation temperature without impacting the maximum cold crystallisation rate. The structural changes of reprocessed PHBV had no significant effect on the non-isothermal crystallisation kinetics of this material. Additionally, the thermomechanical behaviour of reprocessed PHBV indicates that the technological waste of this biopolymer is suitable for recycling as a reusable additive to the virgin polymer matrix. In the case of reprocessed PLLA, on the other hand, a significant decrease in tensile and flexural strength (by 22% and 46%, respectively) was detected, which reflected changes within the biobased polymer structure. Apart from the elastic modulus, all the other thermomechanical properties of PLLA dropped down with an increasing level of recycling.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 620
Author(s):  
Nik Salwani Md Azmi ◽  
Nornizar Anuar ◽  
Muhamad Fitri Othman ◽  
Noor Fitrah Abu Bakar ◽  
Mohd Nazli Naim

The potential of producing L-isoleucine crystals with the aid of electric potential and its effect on the nucleation kinetics of L-isoleucine were probed using polythermal and isothermal crystallisation techniques, assisted with 5 V, 9 V, and 20 V electric potentials. The polythermal experiments were conducted with cooling rates of 0.1 °C/min–0.7 °C/min, whilst isothermal crystallisation was conducted with a supersaturation of 1.30–1.70, and both were carried out in a 200 mL temperature-controlled jacketed reactor. Prediction of the nucleation rate and its associated parameters for isothermal crystallisation was carried out using a molecular dynamics simulation. In both crystallisation techniques, electric potentials increased the nucleation rate, but the intensity of the electric potential had less impact on the measured parameters. Nucleation rates for 5 V isothermal crystallisation were in the order of 1010 higher than for polythermal crystallisation. Electric potential doubled the nucleation rates for polythermal crystallisation and increased the nucleation rates 12-fold in isothermal crystallisation. The isothermal technique produced the form B polymorph, but mixtures of forms A and B were produced in polythermal crystallisation. The predicted critical number of molecules, N*, and the critical radius, r*, were in good agreement with the experimental data, with a higher predicted nucleation rate in the order of 102.


2019 ◽  
Vol 45 (12) ◽  
pp. 967-974 ◽  
Author(s):  
Rui Gao ◽  
Li Zhao ◽  
Yunqi Shao ◽  
Zhen Liu ◽  
Xuelian He ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 392 ◽  
Author(s):  
Ibrahim Ahmad ◽  
Hyun-Kyung Kim ◽  
Suleyman Deveci ◽  
R. Kumar

In the published paper [1], there was a typo error mistake in Equation (5), which was supposed to be expressed as “ log Z t + n log t = log K T − m log Φ ” instead of “log Zt + n log t = log KT − ml” [...]


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 110 ◽  
Author(s):  
Ibrahim Ahmad ◽  
Hyun-Kyung Kim ◽  
Suleyman Deveci ◽  
R. Kumar

The effect of carbon black (CB) and microwave-induced plasma graphene (g) on the crystallisation kinetics of the multimodal high-density polyethylene was studied under non-isothermal conditions. The non-isothermal crystallisation behaviour of the multimodal-high-density polyethylene (HDPE), containing up to 5 wt.% graphene, was compared with that of neat multimodal-HDPE and its carbon black based nanocomposites. The results suggested that the non-isothermal crystallisation behaviour of polyethylene (PE)-g nanocomposites relied significantly on both the graphene content and the cooling rate. The addition of graphene caused a change in the mechanism of the nucleation and the crystal growth of the multimodal-HDPE, while carbon black was shown to have little effect. Combined Avrami and Ozawa equations were shown to be effective in describing the non-isothermal crystallisation behaviour of the neat multimodal-HDPE and its nanocomposites. The mean activation energy barrier (ΔE), required for the transportation of the molecular chains from the melt state to the growing crystal surface, gradually diminished as the graphene content increased, which is attributable to the nucleating agent effect of graphene platelets. On the contrary, the synergistic effect resulting from the PE-CB nanocomposite decreased the ΔE of the neat multimodal-HDPE significantly at the lowest carbon black content.


Sign in / Sign up

Export Citation Format

Share Document