Isothermal crystallisation ATP process for thermoplastic composites with semi-crystalline matrices using automated tape placement machine

2021 ◽  
Vol 227 ◽  
pp. 109381
Author(s):  
Xin Liu ◽  
Baorui Yan ◽  
Feng Ren ◽  
Chao Zhu ◽  
Yadong He ◽  
...  
2021 ◽  
Author(s):  
DUC MINH HOANG ◽  
SUONG VAN HOA

The advent of Automated Fiber Placement (AFP) machine has expanded the capacities to manufacture engineering structures using thermoplastic composites. Structures of cylindrical shapes, flat and curved panels can be easily made using this technique. As more applications and more studies have been made on this technique for thermoplastic composites, many issues have come up. One issue of importance is the variation of the width and thickness of the tow as it is deposited. As the melted thermoplastic composite tow is being pressed under the compression force of the roller, the material flows. This changes the width and the thickness of the tow. The values of the width and thickness depend on many parameters such as the properties of the substrate, the temperature of the material, and the applied pressure. This variation in width and thickness of the individual tow being deposited has an influence on the development of laps and gaps between the deposited tows. This paper presents some of the results on an investigation on the above topic. Widths and thicknesses of carbon/PEEK tows processed using an Automated Fiber Placement machine with a hot gas torch were examined. Preliminary results show that there is significant variation in the width and thickness of the tows upon deposition.


Author(s):  
V. Popineau ◽  
A. Célino ◽  
M. Le Gall ◽  
L. Martineau ◽  
C. Baley ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2560
Author(s):  
Guowei Zhang ◽  
Ting Lin ◽  
Ling Luo ◽  
Boming Zhang ◽  
Yuao Qu ◽  
...  

Thermoplastic composites (TPCs) are promising materials for aerospace, transportation, shipbuilding, and civil use owing to their lightweight, rapid prototyping, reprocessing, and environmental recycling advantages. The connection assemblies of TPCs components are crucial to their application; compared with traditional mechanical joints and adhesive connections, fusion connections are more promising, particularly resistance welding. This study aims to investigate the effects of process control parameters, including welding current, time, and pressure, for optimization of resistance welding based on glass fiber-reinforced polypropylene (GF/PP) TPCs and a stainless-steel mesh heating element. A self-designed resistance-welding equipment suitable for the resistance welding process of GF/PP TPCs was manufactured. GF/PP laminates are fabricated using a hot press, and their mechanical properties were evaluated. The resistance distribution of the heating elements was assessed to conform with a normal distribution. Tensile shear experiments were designed and conducted using the Taguchi method to evaluate and predict process factor effects on the lap shear strength (LSS) of GF/PP based on signal-to-noise ratio (S/N) and analysis of variance. The results show that current is the main factor affecting resistance welding quality. The optimal process parameters are a current of 12.5 A, pressure of 2.5 MPa, and time of 540 s. The experimental LSS under the optimized parameters is 12.186 MPa, which has a 6.76% error compared with the result predicted based on the S/N.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 180
Author(s):  
Kirill Minchenkov ◽  
Alexander Vedernikov ◽  
Alexander Safonov ◽  
Iskander Akhatov

Pultrusion is one of the most efficient methods of producing polymer composite structures with a constant cross-section. Pultruded profiles are widely used in bridge construction, transportation industry, energy sector, and civil and architectural engineering. However, in spite of the many advantages thermoplastic composites have over the thermoset ones, the thermoplastic pultrusion market demonstrates significantly lower production volumes as compared to those of the thermoset one. Examining the thermoplastic pultrusion processes, raw materials, mechanical properties of thermoplastic composites, process simulation techniques, patents, and applications of thermoplastic pultrusion, this overview aims to analyze the existing gap between thermoset and thermoplastic pultrusions in order to promote the development of the latter one. Therefore, observing thermoplastic pultrusion from a new perspective, we intend to identify current shortcomings and issues, and to propose future research and application directions.


Sign in / Sign up

Export Citation Format

Share Document