scholarly journals 3d gravity in Bondi-Weyl gauge: charges, corners, and integrability

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Marc Geiller ◽  
Christophe Goeller ◽  
Céline Zwikel

Abstract We introduce a new gauge and solution space for three-dimensional gravity. As its name Bondi-Weyl suggests, it leads to non-trivial Weyl charges, and uses Bondi-like coordinates to allow for an arbitrary cosmological constant and therefore spacetimes which are asymptotically locally (A)dS or flat. We explain how integrability requires a choice of integrable slicing and also the introduction of a corner term. After discussing the holographic renormalization of the action and of the symplectic potential, we show that the charges are finite, symplectic and integrable, yet not conserved. We find four towers of charges forming an algebroid given by $$ \mathfrak{vir}\oplus \mathfrak{vir}\oplus $$ vir ⊕ vir ⊕ Heisenberg with three central extensions, where the base space is parametrized by the retarded time. These four charges generate diffeomorphisms of the boundary cylinder, Weyl rescalings of the boundary metric, and radial translations. We perform this study both in metric and triad variables, and use the triad to explain the covariant origin of the corner terms needed for renormalization and integrability.

2015 ◽  
Vol 30 (15) ◽  
pp. 1550080
Author(s):  
J. Berra-Montiel ◽  
J. E. Rosales-Quintero

We discuss the interplay between standard canonical analysis and canonical discretization in three-dimensional gravity with cosmological constant. By using the Hamiltonian analysis, we find that the continuum local symmetries of the theory are given by the on-shell space–time diffeomorphisms, which at the action level, correspond to the Kalb–Ramond transformations. At the time of discretization, although this symmetry is explicitly broken, we prove that the theory still preserves certain gauge freedom generated by a constant curvature relation in terms of holonomies and the Gauss's law in the lattice approach.


Universe ◽  
2018 ◽  
Vol 4 (7) ◽  
pp. 81 ◽  
Author(s):  
Bianca Dittrich

A key challenge for many quantum gravity approaches is to construct states that describe smooth geometries on large scales. Here we define a family of (2+1)-dimensional quantum gravity states which arise from curvature excitations concentrated at point like defects and describe homogeneously curved geometries on large scales. These states represent therefore vacua for three-dimensional gravity with different values of the cosmological constant. They can be described by an anomaly-free first class constraint algebra quantized on one and the same Hilbert space for different values of the cosmological constant. A similar construction is possible in four dimensions, in this case the curvature is concentrated along string-like defects and the states are vacua of the Crane-Yetter model. We will sketch applications for quantum cosmology and condensed matter.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Jordan Cotler ◽  
Kristan Jensen

Abstract In recent work we computed the path integral of three-dimensional gravity with negative cosmological constant on spaces which are topologically a torus times an interval. Here we employ a modular bootstrap to show that the amplitude is completely fixed by consistency conditions and a few basic inputs from gravity. This bootstrap is notably for an ensemble of CFTs, rather than for a single instance. We also compare the 3d gravity result with the Narain ensemble. The former is well-approximated at low temperature by a random matrix theory ansatz, and we conjecture that this behavior is generic for an ensemble of CFTs at large central charge with a chaotic spectrum of heavy operators.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
J. Gutowski ◽  
W. A. Sabra

Abstract We classify all supersymmetric solutions of minimal D = 4 gauged supergravity with (2) signature and a positive cosmological constant which admit exactly one Killing spinor. This classification produces a geometric structure which is more general than that found for previous classifications of N = 2 supersymmetric solutions of this theory. We illustrate how the N = 2 solutions which consist of a fibration over a 3-dimensional Lorentzian Gauduchon-Tod base space can be written in terms of this more generic geometric structure.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2012 ◽  
Vol 27 (28) ◽  
pp. 1250164
Author(s):  
J. MANUEL GARCÍA-ISLAS

In the three-dimensional spin foam model of quantum gravity with a cosmological constant, there exists a set of observables associated with spin network graphs. A set of probabilities is calculated from these observables, and hence the associated Shannon entropy can be defined. We present the Shannon entropy associated with these observables and find some interesting bounded inequalities. The problem relates measurements, entropy and information theory in a simple way which we explain.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Patrick Concha ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez ◽  
Gustavo Rubio

Abstract In the present work we find novel Newtonian gravity models in three space-time dimensions. We first present a Maxwellian version of the extended Newtonian gravity, which is obtained as the non-relativistic limit of a particular U(1)-enlargement of an enhanced Maxwell Chern-Simons gravity. We show that the extended Newtonian gravity appears as a particular sub-case. Then, the introduction of a cosmological constant to the Maxwellian extended Newtonian theory is also explored. To this purpose, we consider the non-relativistic limit of an enlarged symmetry. An alternative method to obtain our results is presented by applying the semigroup expansion method to the enhanced Nappi-Witten algebra. The advantages of considering the Lie algebra expansion procedure is also discussed.


2020 ◽  
Vol 12 (8) ◽  
pp. 1319
Author(s):  
Xiaofan Sun ◽  
Bingnan Wang ◽  
Maosheng Xiang ◽  
Liangjiang Zhou ◽  
Shuai Jiang

The Gaussian vertical backscatter (GVB) model has a pivotal role in describing the forest vertical structure more accurately, which is reflected by P-band polarimetric interferometric synthetic aperture radar (Pol-InSAR) with strong penetrability. The model uses a three-dimensional parameter space (forest height, Gaussian mean representing the strongest backscattered power elevation, and the corresponding standard deviation) to interpret the forest vertical structure. This paper establishes a two-dimensional GVB model by simplifying the three-dimensional one. Specifically, the two-dimensional GVB model includes the following three cases: the Gaussian mean is located at the bottom of the canopy, the Gaussian mean is located at the top of the canopy, as well as a constant volume profile. In the first two cases, only the forest height and the Gaussian standard deviation are variable. The above approximation operation generates a two-dimensional volume only coherence solution space on the complex plane. Based on the established two-dimensional GVB model, the three-baseline inversion is achieved without the null ground-to-volume ratio assumption. The proposed method improves the performance by 18.62% compared to the three-baseline Random Volume over Ground (RVoG) model inversion. In particular, in the area where the radar incidence angle is less than 0.6 rad, the proposed method improves the inversion accuracy by 34.71%. It suggests that the two-dimensional GVB model reduces the GVB model complexity while maintaining a strong description ability.


Sign in / Sign up

Export Citation Format

Share Document