legume protein
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huda Abdalrahman AL Jumayi ◽  
Amira M. G. Darwish

Demand for innovative healthy snacks that achieve consumer satisfaction represents increased interest for competitive food producers. The aim of this work was the assessment of physicochemical and sensory quality of barley-soybean chips involving legume protein flours by studying the effects of different substitution levels (10, 20, and 30%) of defatted soybean (DSB) flour, frying temperatures (150, 170, and 190°C), and frying times (60, 90, and 120 sec). The chips’ moisture content was significantly decreased with increased frying temperature and time. The moisture content (1.40%) was achieved at 10% DSB fried at 190°C for 120 sec. The least absorbed oil (29.25%) was achieved at the least substitution percentage (10% DSB), the least frying temperature (150°C), and the least frying time (60 sec). These results were reflected on sensorial parameters that revealed that the most preferred chips were barley-soybean chips with 10% DSB fried at 150 and 170°C. The amylose content was increased by 33.80% in chips substituted with 30% DSB, while it was decreased to 27.16% in chips substituted with 10% DSB, and vice versa for the amylopectin content. TPA revealed that DSB substitution levels were directly proportional with hardness and inversely proportional with elasticity and adhesiveness. From obtained results, substitution levels with 10% DSB fried at 150°C are recommended. These findings encourage the production of innovative enhanced snacks involving legume protein while maintaining consumer satisfaction.


2021 ◽  
Author(s):  
Semin Ozge Keskin ◽  
Tahira Mohsin Ali ◽  
Jasim Ahmed ◽  
Marium Shaikh ◽  
Muhammad Siddiq ◽  
...  

2021 ◽  
Author(s):  
Asli Can Karaca

Recent studies have indicated that legume proteins can be potentially used as an alternative to animal-derived protein ingredients for many food and biomaterial applications, however some modifications may be first required to improve their functionality since they show relatively lower solubility and functional properties compared to commonly used animal-based proteins. A variety of physical, chemical or biological processes can be used to achieve these modifications in structural, physicochemical, and functional properties of legume proteins. The aim of this chapter was to review the most recent studies focusing on modification of structural properties and improvement of functionality of legume proteins. Effects of processing conditions on protein functionality were discussed. Special emphasis was given to the structure–function mechanisms behind these changes. Since the performance of modified legume proteins has been shown to depend on a variety of factors; parameters used in the modification process have to be optimized to achieve the desired level of improvement in legume protein functionality. Each modification method has been indicated to have its own advantages and limitations in terms of performance and applicability in different food matrices. Further studies are required to investigate the interactions of modified legume proteins with other food components during food processing and storage. Furthermore, additional research on the effects of modification treatments on flavor profile and nutritional properties of legume proteins is needed as well.


2021 ◽  
Vol 11 (1) ◽  
pp. 436
Author(s):  
Nastasia Belc ◽  
Denisa Eglantina Duta ◽  
Alina Culetu ◽  
Gabriela Daniela Stamatie

Plant protein concentrates are used to enhance the nutritional quality of bread and to respond to the demand of consumers with respect to increased protein intake. In the present study, bread samples were produced using pea protein concentrate (PP) and soy protein concentrate (SP) substituting wheat flour by 5%, 10%, and 15%. The protein levels were between 1.2- and 1.7-fold (PP) and 1.1- and 1.3-fold (SP) higher than the control bread. The incorporation of 10% and 15% PP allowed for the achievement of a “high protein” claim. Water absorption was correlated with the protein contents of the breads (r = 0.9441). The decrease in bread volume was higher for the PP than SP incorporations, and it was highly negatively correlated with the protein content (r = −0.9356). Soy breads had a softer crumb than pea breads. The total change in crumb colour was higher in the PP than SP breads. The soy breads had an overall acceptability between 6.3 and 6.8, which did not differ (p > 0.05) from the control. PP breads were statistically less liked (p < 0.05). The results underlined that the choice of the type and amount of protein concentrates influenced the bread properties differently.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1678
Author(s):  
Cecilia Moreno ◽  
Luis Mojica ◽  
Elvira González de Mejía ◽  
Rosa María Camacho Ruiz ◽  
Diego A. Luna-Vital

The objective was to investigate the anti-adipogenesis potential of selected legume protein hydrolysates (LPH) and combinations using biochemical assays and in silico predictions. Black bean, green pea, chickpea, lentil and fava bean protein isolates were hydrolyzed using alcalase (A) or pepsin/pancreatin (PP). The degree of hydrolysis ranged from 15.5% to 35.5% for A-LPH and PP-LPH, respectively. Antioxidant capacities ranged for ABTS•+ IC50 from 0.3 to 0.9 Trolox equivalents (TE) mg/mL, DPPH• IC50 from 0.7 to 13.5 TE mg/mL and nitric oxide (NO) inhibition IC50 from 0.3 to 1.3 mg/mL. LPH from PP–green pea, A–green pea and A–black bean inhibited pancreatic lipase (PL) (IC50 = 0.9 mg/mL, 2.2 mg/mL and 1.2 mg/mL, respectively) (p < 0.05). For HMG-CoA reductase (HMGR) inhibition, the LPH from A–chickpea (0.15 mg/mL), PP–lentil (1.2 mg/mL), A–green pea (1.4 mg/mL) and PP–green pea (1.5 mg/mL) were potent inhibitors. Combinations of PP–green pea + A–black bean (IC50 = 0.4 mg/mL), A–green pea + PP–green pea (IC50 = 0.9 mg/mL) and A–black bean + A–green pea (IC50 = 0.6 mg/mL) presented synergistic effects to inhibit PL. A–chickpea + PP–lentil (IC50 = 0.8 mg/mL) and PP–lentil + A–green pea (IC50 = 1.3 mg/mL) interacted additively to inhibit HMGR and synergistically in the combination of A–chickpea + PP–black bean (IC50 = 1.3 mg/mL) to block HMGR. Peptides FEDGLV and PYGVPVGVR inhibited PL and HMGR in silico, showing predicted binding energy interactions of −7.6 and −8.8 kcal/mol, respectively. Combinations of LPH from different legume protein sources could increase synergistically their anti-adipogenic potential.


Sign in / Sign up

Export Citation Format

Share Document