scholarly journals Generalized Bessel QuasilinearizationTechnique Applied to Bratu and Lane–Emden-Type Equations of Arbitrary Order

2021 ◽  
Vol 5 (4) ◽  
pp. 179
Author(s):  
Mohammad Izadi ◽  
Hari M. Srivastava

The ultimate goal of this study is to develop a numerically effective approximation technique to acquire numerical solutions of the integer and fractional-order Bratu and the singular Lane–Emden-type problems especially with exponential nonlinearity. Both the initial and boundary conditions were considered and the fractional derivative being considered in the Liouville–Caputo sense. In the direct approach, the generalized Bessel matrix method based on collocation points was utilized to convert the model problems into a nonlinear fundamental matrix equation. Then, the technique of quasilinearization was employed to tackle the nonlinearity that arose in our considered model problems. Consequently, the quasilinearization method was utilized to transform the original nonlinear problems into a sequence of linear equations, while the generalized Bessel collocation scheme was employed to solve the resulting linear equations iteratively. In particular, to convert the Neumann initial or boundary condition into a matrix form, a fast algorithm for computing the derivative of the basis functions is presented. The error analysis of the quasilinear approach is also discussed. The effectiveness of the present linearized approach is illustrated through several simulations with some test examples. Comparisons with existing well-known schemes revealed that the presented technique is an easy-to-implement method while being very effective and convenient for the nonlinear Bratu and Lane–Emden equations.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
E. H. Doha ◽  
D. Baleanu ◽  
A. H. Bhrawy ◽  
R. M. Hafez

A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.


2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Pan Cheng ◽  
Ling Zhang

This paper will study the high accuracy numerical solutions for elastic equations with nonlinear boundary value conditions. The equations will be converted into nonlinear boundary integral equations by the potential theory, in which logarithmic singularity and Cauchy singularity are calculated simultaneously. Mechanical quadrature methods (MQMs) are presented to solve the nonlinear equations where the accuracy of the solutions is of three orders. According to the asymptotical compact convergence theory, the errors with odd powers asymptotic expansion are obtained. Following the asymptotic expansion, the accuracy of the solutions can be improved to five orders with the Richardson extrapolation. Some results are shown regarding these approximations for problems by the numerical example.


2003 ◽  
Vol 125 (3) ◽  
pp. 533-539 ◽  
Author(s):  
Zekai Ceylan ◽  
Mohamed B. Trabia

Welded cylindrical containers are susceptible to stress corrosion cracking (SCC) in the closure-weld area. An induction coil heating technique may be used to relieve the residual stresses in the closure-weld. This technique involves localized heating of the material by the surrounding coils. The material is then cooled to room temperature by quenching. A two-dimensional axisymmetric finite element model is developed to study the effects of induction coil heating and subsequent quenching. The finite element results are validated through an experimental test. The container design is tuned to maximize the compressive stress from the outer surface to a depth that is equal to the long-term general corrosion rate of the container material multiplied by the desired container lifetime. The problem is subject to several geometrical and stress constraints. Two different solution methods are implemented for this purpose. First, an off-the-shelf optimization software is used. The results however were unsatisfactory because of the highly nonlinear nature of the problem. The paper proposes a novel alternative: the Successive Heuristic Quadratic Approximation (SHQA) technique. This algorithm combines successive quadratic approximation with an adaptive random search within varying search space. SHQA promises to be a suitable search method for computationally intensive, highly nonlinear problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
J. Zhang ◽  
F. Z. Wang ◽  
E. R. Hou

The performance of the parameter-free conical radial basis functions accompanied with the Chebyshev node generation is investigated for the solution of boundary value problems. In contrast to the traditional conical radial basis function method, where the collocation points are placed uniformly or quasi-uniformly in the physical domain of the boundary value problems in question, we consider three different Chebyshev-type schemes to generate the collocation points. This simple scheme improves accuracy of the method with no additional computational cost. Several numerical experiments are given to show the validity of the newly proposed method.


2021 ◽  
Vol 22 (1) ◽  
pp. 138-166
Author(s):  
Othman Mahdi Salih ◽  
Majeed AL-Jawary

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (HPM), or any assumptions to deal with the nonlinear term. The obtained solutions are in recursive sequence forms which can be used to achieve the closed or approximate form of the solutions. Also, the fixed point theorem was presented to assess the convergence of the proposed methods. Several examples of 1D, 2D and 3D problems are solved either analytically or numerically, where the efficiency of the numerical solution has been verified by evaluating the absolute error and the maximum error remainder to show the accuracy and efficiency of the proposed methods. The results reveal that the proposed iterative methods are effective, reliable, time saver and applicable for solving the problems and can be proposed to solve other nonlinear problems. All the iterative process in this work implemented in MATHEMATICA®12. ABSTRAK: Kajian ini berkenaan tiga kaedah berulang boleh percaya diberikan dan dilaksanakan bagi menyelesaikan 1D, 2D dan 3D persamaan Fisher. Kaedah Daftardar-Jafari (DJM), kaedah Temimi-Ansari (TAM) dan kaedah pengecutan Banach (BCM) digunakan bagi mendapatkan penyelesaian numerik dan tepat bagi persamaan Fisher. Kaedah berulang boleh percaya di kategorikan dengan pelbagai faedah, seperti bebas daripada terbitan, mengatasi masalah-masalah yang timbul apabila sempadan polinomial bagi mengurus kata tak linear dalam kaedah penguraian Adomian (ADM), tidak memerlukan kiraan pekali Lagrange sebagai kaedah berulang Variasi (VIM) dan tidak perlu bagi membuat homotopi sebagaimana dalam kaedah gangguan Homotopi (HPM), atau mana-mana anggapan bagi mengurus kata tak linear. Penyelesaian yang didapati dalam bentuk urutan berulang di mana ianya boleh digunakan bagi mencapai penyelesaian tepat atau hampiran. Juga, teorem titik tetap dibentangkan bagi menaksir kaedah bentuk hampiran. Pelbagai contoh seperti masalah 1D, 2D dan 3D diselesaikan samada secara analitik atau numerik, di mana kecekapan penyelesaian numerik telah ditentu sahkan dengan menilai ralat mutlak dan baki ralat maksimum (MER) bagi menentukan ketepatan dan kecekapan kaedah yang dicadangkan. Dapatan kajian menunjukkan kaedah berulang yang dicadangkan adalah berkesan, boleh percaya, jimat masa dan boleh guna bagi menyelesaikan masalah dan boleh dicadangkan menyelesaikan masalah tak linear lain. Semua proses berulang dalam kerja ini menggunakan MATHEMATICA®12.


2021 ◽  
Author(s):  
◽  
Grgo Kamber ◽  

The main objective of this thesis is to utilize the powerful approximation properties of Fup basis functions for numerical solutions of engineering problems with highly localized steep gradients while controlling spurious numerical oscillations and describing different spatial scales. The concept of isogeometric analysis (IGA) is presented as a unified framework for multiscale representation of the geometry and solution. This fundamentally high-order approach enables the description of all fields as continuous and smooth functions by using a linear combination of spline basis functions. Classical IGA usually employs Galerkin or collocation approach using B-splines or NURBS as basis functions. However, in this thesis, a third concept in the form of control volume isogeometric analysis (CV-IGA) is used with Fup basis functions which represent infinitely smooth splines. Novel hierarchical Fup (HF) basis functions is constructed, enabling a local hp-refinement such that they can replace certain basis functions at one resolution level with new basis functions at the next resolution level that have a smaller length of the compact support (h-refinement), but also higher order (p-refinement). This hp-refinement property enables spectral convergence which is significant improvement in comparison to the hierarchical truncated B-splines which enable h-refinement and polynomial convergence. Thus, in domain zones with larger gradients, the algorithm uses smaller local spatial scales, while in other region, larger spatial scales are used, controlling the numerical error by the prescribed accuracy. The efficiency and accuracy of the adaptive algorithm is verified with some classic 1D and 2D benchmark test cases with application to the engineering problems with highly localized steep gradients and advection-dominated problems.


Author(s):  
Hajrudin Pasic

Abstract Presented is an algorithm suitable for numerical solutions of multibody mechanics problems. When s-stage fully implicit Runge-Kutta (RK) method is used to solve these problems described by a system of n ordinary differential equations (ODE), solution of the resulting algebraic system requires 2s3 n3 / 3 operations. In this paper we present an efficient algorithm, whose formulation differs from the traditional RK method. The procedure for uncoupling the algebraic system into a block-diagonal matrix with s blocks of size n is derived for any s. In terms of number of multiplications, the algorithm is about s2 / 2 times faster than the original, nondiagonalized system, as well as s2 times in terms of number of additions/multiplications. With s = 3 the method has the same precision and stability property as the well-known RADAU5 algorithm. However, our method is applicable with any s and not only to the explicit ODEs My′ = f(x, y), where M = constant matrix, but also to the general implicit ODEs of the form f (x, y, y′) = 0. In the solution procedure y is assumed to have a form of the algebraic polynomial whose coefficients are found by using the collocation technique. A proper choice of locations of collocation points guarantees good precision/stability properties. If constructed such as to be L-stable, the method may be used for solving differential-algebraic equations (DAEs). The application is illustrated by a constrained planar manipulator problem.


Author(s):  
Aichun Feng ◽  
Zhi-Min Chen ◽  
W. G. Price

A Rankine source method with a continuous desingularized free surface source panel distribution is developed to solve numerically a wave–body interaction problem with nonlinear boundary conditions. A body undergoes forced oscillatory motion in a free water surface and the variation of wetted body surface is captured by a regridding process. Free surface sources are placed in continuous panels, rather than points in isolation, over the calm water surface, with free surface collocation points placed on the calm water surface. Nonlinear kinematic and dynamic free surface boundary conditions along the collocation points on the calm water surface are solved in a time domain simulation based on a Lagrange time dependent formulation. Compared with isolated desingularized source points distribution methods, a significantly reduced number of free surface collocation points with sparse distribution are utilized in the present numerical computation. The numerical scheme of study is shown to be computationally efficient and the accuracy of numerical solutions is compared with traditional numerical methods as well as measurements.


Sign in / Sign up

Export Citation Format

Share Document