Grass-livestock balance based grassland ecological carrying capability and sustainable strategy in the Yellow River Source National Park, Tibet Plateau, China

2021 ◽  
Vol 18 (8) ◽  
pp. 2201-2211
Author(s):  
Hui Yu ◽  
Bin-tao Liu ◽  
Gen-xu Wang ◽  
Tong-zuo Zhang ◽  
Yan Yang ◽  
...  
Author(s):  
Fan Yang ◽  
Quanqin Shao ◽  
Zhigang Jiang

Using the Yellow-River-Source National Park (YRSNP) as a study site, an unmanned aerial vehicle (UAV) remote sensing and line transect method was used to investigate the number of wild herbivorous animals and livestock, including the kiang (Equus kiang) and Tibetan gazelle (Procapra picticaudata). A downscaling algorithm was used to generate the forage yield data in YRSNP based on 30 m spatial resolution. On this basis, we estimated the forage–livestock balance, which included both wild animals and livestock, and analyzed the effects of functional zone planning in national parks on the forage–livestock balance in YRSNP. The results showed that the estimates of large herbivore population numbers in YRSNP based on population density in the aerial sample strips, which were compared and validated with statistical data and warm season survey results, indicated that the number of kiangs and Tibetan gazelles in the 2017 cold season was 12900 and 12100, respectively. The number of domestic yaks, Tibetan sheep, and horses was 53400, 76800, and 800, respectively, and the total number of sheep units was 353200. The ratio of the number of large wild herbivores and livestock sheep units was 1:5; Large wild herbivores have different preferences for functional zones, preferring ecological restoration areas consisting mainly of degraded grassland; The grazing pressure indices of the core reserve areas and ecological restoration areas were 0.168 and 0.276, respectively, indicating that these two regions still have high grazing potential. However, the grazing pressure index of the traditional utilization areas was 1.754, indicating that these grasslands are severely overloaded; After the planning and implementation of functional zones, the grazing pressure index of YRSNP was 1.967. Under this measure, the number of livestock was not reduced and the grazing pressure nearly doubled, indicating that forage–livestock conflict has become more severe.


Water ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 513 ◽  
Author(s):  
Jun Liu ◽  
Donghui Shanguan ◽  
Shiyin Liu ◽  
Yongjian Ding

Multisource reanalysis datasets provide an effective way to help us understand hydrological processes in inland alpine regions with sparsely distributed weather stations. The accuracy and quality of two widely used datasets, the China Meteorological Assimilation Driving Datasets to force the SWAT model (CMADS), and the Climate Forecast System Reanalysis (CFSR) in the Qinghai-Tibet Plateau (TP), were evaluated in this paper. The accuracy of daily precipitation, max/min temperature, relative humidity and wind speed from CMADS and CFSR are firstly evaluated by comparing them with results obtained from 131 meteorological stations in the TP. Statistical results show that most elements of CMADS are superior to those of CFSR. The average correlation coefficient (R) between the maximum temperature and the minimum temperature of CMADS and CFSR ranged from 0.93 to 0.97. The root mean square error (RMSE) for CMADS and CFSR ranged from 3.16 to 3.18 °C, and ranged from 5.19 °C to 8.14 °C respectively. The average R of precipitation, relative humidity, and wind speed for CMADS are 0.46; 0.88 and 0.64 respectively, while they are 0.43, 0.52, and 0.37 for CFSR. Gridded observation data is obtained using the professional interpolation software, ANUSPLIN. Meteorological elements from three gridded data have a similar overall distribution but have a different partial distribution. The Soil and Water Assessment Tool (SWAT) is used to simulate hydrological processes in the Yellow River Source Basin of the TP. The Nash Sutcliffe coefficients (NSE) of CMADS+SWAT in calibration and validation period are 0.78 and 0.68 for the monthly scale respectively, which are better than those of CFSR+SWAT and OBS+SWAT in the Yellow River Source Basin. The relationship between snowmelt and other variables is measured by GeoDetector. Air temperature, soil moisture, and soil temperature at 1.038 m has a greater influence on snowmelt than others.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ze Ren ◽  
Cheng Zhang ◽  
Xia Li ◽  
Kang Ma ◽  
Zhe Zhang ◽  
...  

Thermokarst lakes are a ubiquitous and important landscape feature in cold regions and are changing tremendously due to the accelerated climate change. In thermokarst lakes, sediment and water are two distinct but highly interconnected habitats, harboring different bacterial communities in terms of taxonomic composition. However, the co-occurrence networks of these bacterial communities remain unclear. Here, we investigate the co-occurrence ecological networks of sediment and water bacterial communities for thermokarst lakes in the Yellow River Source Area on the Qinghai-Tibet Plateau. The results show that the bacterial communities construct distinct co-occurrence networks in sediment and water. The metacommunity network was parsed into four major modules formed by the operational taxonomic units (OTUs) enriched in sediment or water independently, and water-enriched OTUs exhibited much closer interconnections than sediment-enriched OTUs. When considering the sediment and water bacterial networks separately, different topological properties and modular patterns present: the sediment bacterial network was more clustered while the modules less responded to the environmental variables. On the contrary, the water bacterial network was more complex with the OTUs more interconnected and its modules more responded to the environmental variables. Moreover, the results of the structural equation model suggest that, by the influence of environmental variations on individual modules, the water bacterial communities would be more vulnerable under the fact of accelerating climate change. This study provides insights beyond a conventional taxonomic perspective, adding our knowledge of the potential mechanisms structuring bacterial community assembly and improving our prediction of the responses of this fast-changing ecosystem to future climate change.


2017 ◽  
Vol 8 (3) ◽  
pp. 495-509 ◽  
Author(s):  
Rong Liu ◽  
Jun Wen ◽  
Xin Wang ◽  
Zuoliang Wang

In this paper, the ground observations were compared to the ERA-Interim, NCEP-DOE AMIP-II Reanalysis, MODIS ET product, and emerging offline SEBS ET data sets in the Yellow River source region of the Tibet Plateau. In general, the slopes of linear least squares exhibit differences, with ERA-Interim, NCEP–DOE, MOD16, and SEBS slopes of 0.88 ± 0.05, 0.64 ± 0.07, 0.66 ± 0.17, and 1.24 ± 0.97 respectively. ERA-Interim was found superior with ground observations to others; therefore, it provided a good representation of the study area. Based on the ERA-Interim ET product, the Sen's slope estimator and the Mann–Kendall (MK) test were applied to quantify the significance of the shifts in trends, while the moving t-test and MK test characterized abrupt changes. The results show that the Yellow River source region experienced a statistical increase in evapotranspiration (ET) in the northern part and a decrease in the southern part of the region from 1979 to 2014 at rates of approximately 1.65 and −0.50 mm/yr, respectively. The shift in the annual ET trend was more pronounced, and abrupt changes were detected in the 1980s. Precipitation was the most dominant factor affecting ET variation, whereas surface temperature was the least influential.


Author(s):  
Fan Yang ◽  
Quanqin Shao ◽  
Zhigang Jiang

Using the Yellow-River-Source National Park (YRSNP) as a study site, an unmanned aerial vehicle (UAV) remote sensing and line transect method was used to investigate the number of wild herbivorous animals and livestock, including the kiang (Equus kiang) and Tibetan gazelle (Procapra picticaudata). A downscaling algorithm was used to generate the forage yield data in YRSNP based on a 30-m spatial resolution. On this basis, we estimated the forage–livestock balance, which included both wild animals and livestock, and analyzed the effects of functional zone planning in national parks on the forage–livestock balance in YRSNP. The results showed that the estimates of large herbivore population numbers in YRSNP based on population density in the aerial sample strips, which were compared and validated with official statistics and warm season survey results, indicated that the numbers of kiangs and Tibetan gazelles in the 2017 cold season were 12,900 and 12,100, respectively. The numbers of domestic yaks, Tibetan sheep, and horses were 53,400, 76,800, and 800, respectively, and the total number of sheep units was 353,200. The ratio of large wild herbivores and livestock sheep units was 1:5. Large wild herbivores have different preferences for functional zones, preferring ecological restoration areas consisting mainly of sparse grassland. The grazing pressure indices of the core reserve areas and ecological restoration areas were 0.168 and 0.276, respectively, indicating that these two regions still have high grazing potential. However, the grazing pressure index of the traditional utilization areas was 1.754, indicating that these grasslands are severely overloaded. After the planning and implementation of functional zones, the grazing pressure index of YRSNP was 1.967. Under this measure, the number of livestock was not reduced and the grazing pressure nearly doubled, indicating that forage–livestock conflict has become more severe in YRSNP.


2021 ◽  
Author(s):  
Ze Ren ◽  
Cheng Zhang ◽  
Xia Li ◽  
Kang Ma ◽  
Kexin Feng ◽  
...  

Thermokarst lakes are forming from permafrost thaw and severely affected by accelerating climate change. Sediment and water in these lakes are distinct habitats but closely connected. However, our understanding of the differences and linkages between sediment and water in thermokarst lakes remain largely unknow, especially from the perspective of bacterial community patterns and underlying mechanisms. In this study, we examined bacterial communities in sediment and water in thermokarst lakes in the Yellow River Source area, Qinghai-Tibet Plateau. Bacterial taxa were divided to abundant and rare according to their relative abundance, and the Sorensen dissimilarity (βsor) was partitioned into turnover (βturn) and nestedness (βnest). The results showed that the whole bacterial communities as well as the abundant and rare subcommunities differed substantially between sediment and water, in terms of taxonomical composition, α-diversity, and β-diversity. Sediment had significantly lower α-diversity indexes but higher β-diversity than water. Abundant taxa had significantly higher relative abundances but lower α-diversity and β-diversity than rare taxa. Moreover, bacterial communities are predominantly governed by strong turnover processes (βturn/βsor ratio of 0.925). Abundant subcommunities were significantly lower in βturn/βsor ratio compared to rare subcommunities. Bacterial communities in sediment had a significantly higher βturn/βsor ratio than in water. The results suggest that the bacterial communities of thermokarst lakes, especially rare subcommunities or particularly in sediment, might be strongly structured by environmental filtering and geographical isolation, leading to compositional distinct. By revealing bacterial communities in sediment and water, this integral study increased our current knowledge of thermokarst lakes, enhancing our understanding of the community assembly rules and ecosystem structures and processes of these rapid changing and vulnerable ecosystems.


Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


Sign in / Sign up

Export Citation Format

Share Document