Diffusion Characteristics and Mechanism of Waste Cooking Oil Rejuvenator in Ultraviolet Aged Asphalt Using Multi-Scale Evaluation Method

2021 ◽  
Vol 50 (5) ◽  
pp. 20210427
Author(s):  
Bo Li ◽  
Ke Qiu ◽  
Zhiwei Li ◽  
Xiaolan Li ◽  
Yongning Wang
2020 ◽  
Vol 6 (2) ◽  
pp. 132
Author(s):  
Ratna Yuniarti ◽  
Desi Widianty ◽  
Rohani Rohani ◽  
Hasyim Hasyim

Asphalt concrete wearing course is laid on the top of road pavement so that directly exposed to ultra violet light and other environment impact. The higher temperature at the pavement surface and exposure to atmospheric oxygen accelerated aging cause asphalt to stiffen and become brittle. This aging result decrease the binding of asphalt and aggregate leads various damage of pavement. The aged asphalt rejuvenated and recycled with rejuvenating agent has been developed to reduce the use of virgin material for road maintenance. This article aims to review durability of asphalt concrete wearing course using waste cooking oil, epoxy resin, kerosene and waste engine oil as asphalt rejuvenators. Aging asphalt was prepared by heating in an oven at 85 oC for 120 hours (long term oven aging). Durability was assessed from the value of Marshall immersion which represent the resistance of asphalt mixture at water immersion. Relation between Marshall immersion and voids in mix (VIM), voids in the mineral aggregate (VMA), voids filled with bitumen (VFB) and density are also evaluated. From the analysis, it can be concluded that the use of waste cooking oil, epoxy resin, kerosene and waste engine oil as asphalt rejuvenators increase the durability of asphalt mixture containing the aged asphalt.


2019 ◽  
Vol 9 (9) ◽  
pp. 1767 ◽  
Author(s):  
Haibin Li ◽  
Bo Dong ◽  
Wenjie Wang ◽  
Guijuan Zhao ◽  
Ping Guo ◽  
...  

In order to explore the applicability of waste engine oil and waste cooking oil used in aged asphalt, the effect of waste engine oil and waste cooking oil on aged asphalt recycling was studied through the analysis of the improvement of its physical, chemical, and rheological properties. Six aged asphalt binders with different aging times were obtained by indoor test simulation using the Thin Film Oven Test at 163 °C. Then, waste engine oil and waste cooking oil with five different dosages were added to investigate improvement performances. The results clearly demonstrated that waste engine oil and waste cooking oil could soften and recover the work ability of aged asphalt effectively. Furthermore, the physical, chemical, and rheological performances of six aged asphalts could be improved to normal level of virgin asphalt if the content of waste engine oil or waste cooking oil was suitable. The rheological properties of aged asphalt with waste cooking oil had better improvement than that with waste engine oil. Overall, the good applicability would provide waste oil a much wider service range in asphalt pavement recycling field. It also provided a method of developing new rejuvenating agent with the two waste oils to achieve complex synergism effect. Moreover, it realized the waste cyclic utilization and environmental protection.


Author(s):  
Daniel Oldham ◽  
Amirul Rajib ◽  
Kodanda Phani Raj Dandamudi ◽  
Yixin Liu ◽  
Shuguang Deng ◽  
...  

2018 ◽  
Vol 65 ◽  
pp. 02002
Author(s):  
Ramadhansyah Putra Jaya ◽  
Romana Sarker Lopa ◽  
Norhidayah Abdul Hassan ◽  
Haryati Yaacob ◽  
Mohamad Idris Ali ◽  
...  

Asphaltic concrete pavement is popular worldwide, but this type of pavement requires frequent maintenance and rehabilitation as it cannot cope up with the increasing number of traffic vehicles and loads. Therefore, modifying asphalt pavement to reduce the damages and defects is necessary, thereby enhancing the serviceability of pavement. This study presents the effect of waste cooking oil on asphalt mixture at different ageing conditions. A 60/70 penetration-grade asphalt binder was used, and 5% of this binder was replaced with untreated and treated waste cooking oil. Asphalt mixtures were prepared at the selected 5% optimum bitumen content and under two tests, i.e. Marshall stability and resilient modulus. The findings showed the better stability and resilient modulus of long-term aged samples incorporated with treated waste cooking oil than the unaged and short-term aged samples. The incorporation of untreated waste cooking oil caused reduced performance compared with the controlled and long-term aged samples. This result can be attributed to the high acid value of waste cooking oil. Therefore, treated waste cooking oil can be used as a binder replacement given its significantly higher performance at the mentioned ageing condition than the controlled mixture.


2021 ◽  
Vol 13 (8) ◽  
pp. 4373
Author(s):  
Lin Li ◽  
Cheng Xin ◽  
Mingyang Guan ◽  
Meng Guo

The purpose of this study was to investigate the regeneration effect of waste cooking oil (WCO) on aged asphalt with molecular dynamics (MD) simulation, comparing it with a rejuvenator. Firstly, the molecular models of virgin and aged asphalt were established by blending the four components of asphalt (saturate, aromatic, resin, and asphaltenes). Then, different dosages of the rejuvenator and WCO (6, 9, and 12%) were included in the aged asphalt model for its regeneration. After that, MD simulations were utilized for researching the mechanical and cohesive properties of the recycled asphalt, including its density, viscosity, cohesive energy density (CED), shear modulus (G), bulk modulus (K), and elastic modulus (E). The results show that the density values of the asphalt models were relatively lower than the existing experimental results in the literature, which is mostly attributed to the fact that the heteroatoms of the asphalt molecules were not considered in the simulation. On the other hand, the WCO addition decreased the viscosity, the shear modulus (G), the bulk modulus (K), and the elastic modulus (E) of the aged asphalt, improving its CED. Moreover, the nature of the aged asphalt was gradually restored with increasing rejuvenator or WCO contents. Compared with the rejuvenator, the viscosity of the aged asphalt was more effectively restored through adding WCO, while the effect of the CED and the mechanical properties recovery of the aged asphalt was relatively low. This implies that WCO could restore partial mechanical properties of aging asphalt, which proves the possibility of using WCO as an asphalt rejuvenator. Additionally, the MD simulation played an important role in understanding the molecular interactions among the four components of asphalt and the rejuvenator, which will serve as a guideline to better design a WCO rejuvenator and optimize its content.


2021 ◽  
Vol 7 (3) ◽  
pp. 502-517
Author(s):  
Munder Bilema ◽  
Yusri Bin Aman ◽  
Norhidayah Abdul Hassan ◽  
Zaid Al-Saffar ◽  
Kabiru Ahmad ◽  
...  

High demand for asphalt binders in road construction verifies the need of finding alternative materials through asphalt pavement recycling. This paper investigated the impact of different rejuvenators on the performance of an aged asphalt binder. Virgin Olive oil, virgin cooking oil, waste cooking oil, virgin engine oil, and waste engine oil were added to a 30/40 penetration grade aged asphalt binder at a fixed oil content of 4% for all types. The wet method was used to blend the rejuvenators and aged asphalt binder. The physical, rheological, and chemical properties of the rejuvenated asphalt binder were evaluated using several laboratory tests which include penetration, softening point, bleeding, loss on heating, storage stability, penetration index, ductility, viscosity, dynamic shear rheometer, and Fourier transform infrared spectroscopy. The outcomes of the physical properties showed that the olive, waste, and virgin cooking rejuvenators can restore the aged asphalt binder to a penetration grade of 60/70. In contrast, the virgin and waste engine oil required a more quantity of oil to rejuvenate the aged asphalt binder. A sufficient amount of rejuvenator could regenerate the (G*/sin δ), (δ°), and (G*) for the aged asphalt binder. The addition of virgin olive and cooking oils in aged asphalt led to a rutting issue. No chemical reactions were observed with the addition of rejuvenators but they give an impact on reducing the oxidation level of the aged asphalt binder. As a result, further research should be performed on waste cooking oil given that it is inexpensive and provides excellent performance results. Doi: 10.28991/cej-2021-03091669 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document