scholarly journals Late Quaternary Geology of the Canterbury Continental Terrace

2021 ◽  
Author(s):  
◽  
Richard Howard Herzer

<p>The Late Quaternary stratigraphy and sedimentary processes are interpreted for an area of continental shelf and slope on the eastern side of the South Island, New Zealand, between latitudes 43°00's and 44°50's. Two formations are recognised in the Late Quaternary stratigraphy of the shelf: the Canterbury Bight Formation of mainly Last Glacia1 age and, locally overlying it, the Pegasus Formation of mainly Holocene age. The formations are distinguished by shelf-wide unconformities (visib1e in seismic profiles), by geomorphology, by grain-size modes, and by macrofauna. Ridge-and-swa1e topography occurs on two scales on the shelf. Very large ridges and troughs are interpreted from microbathymetry, stratigraphy, sediments and macrofauna to be the remains of Pleistocene barrier/lagoon complexes. With the aid of radiocarbon dates, four well developed shorelines between 28,000 yr and 15,000 yr old are recognised. The smaller ridges are submarine features, formed by strong currents. Those ridges that are in a zone of constricted and accelerated currents near Banks Peninsula are active, while those well removed from the peninsula constriction are fossil and date from times of lower sea level. Sedimentation on the continental shelf has reached a state of equilibrium with the modern hydraulic regime. Relict sediments of the deglacial transgressive sand/gravel sheet are being reworked in zones of high energy, principally in the region of constricted flow around Banks Peninsula. Modern-input sand (distinguished by its grain-size mode) is restricted by currents mainly to an active belt near shore, but locally it has replaced palimpsest sand on the middle shelf. The modern mud facies, being confined by zones of higher energy, has reached its maximum areal extent; its greatest thickness is in Pegasus Bay. Sea-bed drifter studies, and studies of sediment texture and provenance show that net sediment movement on the shelf and along shore during both Pleistocene and modern times has been northwards. The continental slope is dissected by submarine slide scars in the south and by submarine canyons in the north. Streams of fine sand, transported from the continental shelf to the upper slope by north-flowing currents during Pleistocene lowered sea levels, initiated the erosion of submarine canyons. Interception of littoral-drifted gravel by established canyons reaching Pleistocene strand lines probably accelerated. canyon erosion. The canyons are thought to be now effectively dormant. Deposition of fine sediment from suspension has dominated the development of the southern slope. This slope is consequently free of deeply corrasional features like submarine canyons but is prone to failure by gravity sliding. The youngest slides are less than 18,000 yr old. The history of growth of Pegasus Submarine Canyon is investigated in detail. The course of the canyon across the shelf is not fault controlled. As well as growing landwards, the canyon and its tributaries have, during Pleistocene sea level stillstands, grown southwards along shore towards the supply of littoral drifted gravel and sand. A buried tributary, of Penultimate Glacial age or older, on the canyon's west side, once brought the canyon 7 km closer to the present shore. The relative ages of the south-trending arms of the canyon are inferred from their relationship to known Last Glacial shorelines that are preserved on the shelf, and by their position with respect to a regional subsurface unconformity of Penultimate Glacial age. Canyon erosion was concentrated in the largest arm during the last deglacial rise of sea level, and shallow channels, interpreted as feeders are common around its rim.</p>

2021 ◽  
Author(s):  
◽  
Richard Howard Herzer

<p>The Late Quaternary stratigraphy and sedimentary processes are interpreted for an area of continental shelf and slope on the eastern side of the South Island, New Zealand, between latitudes 43°00's and 44°50's. Two formations are recognised in the Late Quaternary stratigraphy of the shelf: the Canterbury Bight Formation of mainly Last Glacia1 age and, locally overlying it, the Pegasus Formation of mainly Holocene age. The formations are distinguished by shelf-wide unconformities (visib1e in seismic profiles), by geomorphology, by grain-size modes, and by macrofauna. Ridge-and-swa1e topography occurs on two scales on the shelf. Very large ridges and troughs are interpreted from microbathymetry, stratigraphy, sediments and macrofauna to be the remains of Pleistocene barrier/lagoon complexes. With the aid of radiocarbon dates, four well developed shorelines between 28,000 yr and 15,000 yr old are recognised. The smaller ridges are submarine features, formed by strong currents. Those ridges that are in a zone of constricted and accelerated currents near Banks Peninsula are active, while those well removed from the peninsula constriction are fossil and date from times of lower sea level. Sedimentation on the continental shelf has reached a state of equilibrium with the modern hydraulic regime. Relict sediments of the deglacial transgressive sand/gravel sheet are being reworked in zones of high energy, principally in the region of constricted flow around Banks Peninsula. Modern-input sand (distinguished by its grain-size mode) is restricted by currents mainly to an active belt near shore, but locally it has replaced palimpsest sand on the middle shelf. The modern mud facies, being confined by zones of higher energy, has reached its maximum areal extent; its greatest thickness is in Pegasus Bay. Sea-bed drifter studies, and studies of sediment texture and provenance show that net sediment movement on the shelf and along shore during both Pleistocene and modern times has been northwards. The continental slope is dissected by submarine slide scars in the south and by submarine canyons in the north. Streams of fine sand, transported from the continental shelf to the upper slope by north-flowing currents during Pleistocene lowered sea levels, initiated the erosion of submarine canyons. Interception of littoral-drifted gravel by established canyons reaching Pleistocene strand lines probably accelerated. canyon erosion. The canyons are thought to be now effectively dormant. Deposition of fine sediment from suspension has dominated the development of the southern slope. This slope is consequently free of deeply corrasional features like submarine canyons but is prone to failure by gravity sliding. The youngest slides are less than 18,000 yr old. The history of growth of Pegasus Submarine Canyon is investigated in detail. The course of the canyon across the shelf is not fault controlled. As well as growing landwards, the canyon and its tributaries have, during Pleistocene sea level stillstands, grown southwards along shore towards the supply of littoral drifted gravel and sand. A buried tributary, of Penultimate Glacial age or older, on the canyon's west side, once brought the canyon 7 km closer to the present shore. The relative ages of the south-trending arms of the canyon are inferred from their relationship to known Last Glacial shorelines that are preserved on the shelf, and by their position with respect to a regional subsurface unconformity of Penultimate Glacial age. Canyon erosion was concentrated in the largest arm during the last deglacial rise of sea level, and shallow channels, interpreted as feeders are common around its rim.</p>


2007 ◽  
Vol 48 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Douglas A. Hodgson ◽  
Robert B. Taylor ◽  
John G. Fyles

ABSTRACT Emerged shorelines are few and poorly defined on Prince Patrick and Brock islands. The sparse radiocarbon dates show emergence of only 10 m through the Holocene on the Arctic Ocean coast, increasing to 20 m 100 km to the east. Hence, from Brock Island, representative of westernmost coasts, the sea level curve since the latest Pleistocene has a very low gradient, whereas on eastern Prince Patrick Island the curve takes the more typical exponential form. A decline in isobases towards the west is thus registered. Drowned estuaries, breached lakes, and coastal barriers, particularly in southwest Prince Patrick Island, suggest that the sea is now transgressing at a rate that decreases towards the north end of the island, hence there is also a component of tilt to the south. Delevelling is assumed to result from undefined ice loads, but may have a tectonic component. The sole prominent raised marine deposit is a ridge probably built in a period of more mobile sea ice, possibly at a time of stable or slightly rising sea level in the middle or early Holocene. It winds discontinuously along several hundred of kilometres of the shores of the Arctic Ocean and connecting channels, declining to the south.


2012 ◽  
Vol 70 (1) ◽  
pp. 363-380 ◽  
Author(s):  
Guanqiang Cai ◽  
Li Miao ◽  
Hongjun Chen ◽  
Guihua Sun ◽  
Jiaoqi Wu ◽  
...  

2005 ◽  
Vol 57 (1) ◽  
pp. 65-83 ◽  
Author(s):  
Patrick Lajeunesse ◽  
Michel Allard

Abstract This study presents a paleoenvironmental reconstruction of deglaciation dynamics and chronology, glaciomarine and postglacial sedimentation, as well as glacioisostatic recovery in the Rivière Nastapoka area, eastern Hudson Bay. Results indicate that the retreat of Québec-Labrador ice was mainly controlled by topography and was marked by four phases. Radiocarbon dates indicate that deglaciation began about 8.3 ka cal. BP and was characterized by a stillstand of the ice margin in the Nastapoka Hills that lead to the deposition of a drift belt in a high relative sea-level (Phase 1). After this stabilisation, the ice margin retreated rapidly eastward in a region of low relief and deposited a drape of silty clay in a falling relative sea-level (Phase 2). A second phase of stabilization of the ice margin lasted until at least 7.2 ka cal.BP on the higher shield peneplaine east of the limit of the Tyrrell Sea (Phase 3). This lead to the deposition of a belt of glaciofluvial deltas in a lower relative sea-level. Following this stillstand, the eastward retreat and subsequent ablation of the ice in central Québec-Labrador generated meltwater that transported large volumes of glacial sediments by fluvial processes and downcutting of fluvial terraces in previously deposited glaciofluvial and marine sediments (Phase 4). Glacioisostatic rebound reached 0.07 m/yr during the early phase of deglaciation and decreased to 0.04 m/yr between 6 and 5 ka cal. BP and 0.016 m/yr in the last 1000 years.


2007 ◽  
Vol 68 (1) ◽  
pp. 162-172 ◽  
Author(s):  
Sébastien Boulay ◽  
Christophe Colin ◽  
Alain Trentesaux ◽  
Stéphane Clain ◽  
Zhifei Liu ◽  
...  

AbstractGrain-size analyses, coupled with end-member modelling, have been performed on the terrigenous fraction of two Leg 184 Ocean Drilling Program sites (1144 and 1146) from the South China Sea. The grain-size distributions over the last 1.8 Ma enable a new interpretation of their connections to sea-level variations and East Asian monsoon strength. Previous investigations in this area have associated grain-size variability with enhanced eolian input during glacial stages. End-member modelling downgrades the importance of this eolian contribution and indicates that the sediments can be described as a mixture of three end-members: fluvial mud inputs, shelf reworking and river mouth migration. Grain-size variations in the Pleistocene section of the cores indicate a multiple-stage evolution: (i) from 1.8 to 1.25 Ma, the downcore grain-size variations are low but show a correspondence between monsoon rainfall intensity and the fine grain-sized fluvial inputs; no link with sea-level variations is noticeable; (ii) from 1.25 to 0.9 Ma, there is an increase (decrease) in the intermediate (fine) end-member (∼ 100 kyr cycle) that is associated with the onset of a stronger summer monsoon and modest shelf reworking; (iii) from 0.9 to 0 Ma the grain-size record is dominated by global sea-level variations; each glacial stage is associated with extensive shelf reworking and conveyance of coarse particles to the basin.


Author(s):  
GERALD L. SHIDELER ◽  
DONALD J. P. SWIFT ◽  
GERALD H. JOHNSON ◽  
BARRY W. HOLLIDAY

1984 ◽  
Vol 1 (19) ◽  
pp. 131 ◽  
Author(s):  
Angus D. Gordon ◽  
John G. Hoffman

Engineering projects on the continental shelf off Sydney, Australia, have stimulated investigation into the sediment transport system of the shelf. Investigation activities associated with these projects have included: definition of sea bed morphology, sediment distribution and bedform characteristics; monitoring of steady and wave induced currents; wind data collection; suspended sediment sampling; bottom camera sediment movement investigations and analytical studies of sediment reaction to sea bed forcing functions. Sea bed velocity exceedence relationships for both wave oscillations and steady currents have been determined at depths of 24 m, 60 m and 80 m. Thresholds of sediment movement have been defined. Relative sediment transport computations have been undertaken and studies of suspended sediment concentration profiles are in progress so that absolute transport rates can be determined. The prevailing conditions, which include a mainly south bound current, are seldom sufficient to induce entrainment of shelf sediments. Transport events mainly result from major storms in the Tasman Sea which produce both high energy waves and north bound currents. Although these events are rare and short lived, the combined wave and current shear produced at the sea bed during the events gives rise to entrainment conditions which result in their dominance of the shelf sediment transport system.


2003 ◽  
Vol 1 ◽  
pp. 367-402 ◽  
Author(s):  
Peter N. Johannessen

Paralic and shallow marine sandstones were deposited in the Danish Central Graben during Late Jurassic rifting when half-grabens were developed and the overall eustatic sea level rose. During the Kimmeridgian, an extensive plateau area consisting of the Heno Plateau and the Gertrud Plateau was situated between two highs, the Mandal High to the north, and the combined Inge and Mads Highs to the west. These highs were land areas situated on either side of the plateaus and supplied sand to the Gertrud and Heno Plateaus. Two graben areas, the Feda and Tail End Grabens, flanked the plateau area to the west and east, respectively. The regressive–transgressive succession consists of intensely bioturbated shoreface sandstones, 25–75 m thick. Two widespread unconformities (SB1, SB2) are recognised on the plateaus, forming the base of sequence 1 and sequence 2, respectively. These unconformities were created by a fall in relative sea level during which rivers may have eroded older shoreface sands and transported sediment across the Heno and Gertrud Plateaus, resulting in the accumulation of shoreface sandstones farther out in the Feda and Tail End Grabens, on the south-east Heno Plateau and in the Salt Dome Province. During subsequent transgression, fluvial sediments were reworked by high-energy shoreface processes on the Heno and Gertrud Plateaus, leaving only a lag of granules and pebbles on the marine transgressive surfaces of erosion (MTSE1, MTSE2). The sequence boundary SB1 can be traced to the south-east Heno Plateau and the Salt Dome Province, where it is marked by sharp-based shoreface sandstones. During low sea level, erosion occurred in the southern part of the Feda Graben, which formed part of the Gertrud and Heno Plateaus, and sedimentation occurred in the Norwegian part of the Feda Graben farther to the north. During subsequent transgression, the southern part of the Feda Graben began to subside, and a succession of backstepping back-barrier and shoreface sediments, 90 m thick, was deposited. In the deep Tail End and Feda Grabens and the Salt Dome Province, sequence boundary SB2 is developed as a conformity, indicating that there was not a significant fall in relative sea level in these grabens, probably as a result of high subsidence rates. Backstepping lower shoreface sandstones overlie SB2 and show a gradual fining-upwards to offshore claystones that are referred to the Farsund Formation. On the plateaus, backstepping shoreface sandstones of sequence 2 are abruptly overlain by offshore claystones, indicating a sudden deepening and associated cessation of sand supply, probably caused by drowning of the sediment source areas on the Mandal, Inge and Mads Highs. During the Volgian, the Gertrud Plateau began to subside and became a graben. During the Late Kimmeridgian – Ryazanian, a long-term relative sea-level rise resulted in deposition of a thick succession of offshore claystones forming highstand and transgressive systems tracts on the Heno Plateau, and in the Gertrud, Feda and Tail End Grabens.


1990 ◽  
Vol 33 (3) ◽  
pp. 265-275 ◽  
Author(s):  
Margaret J. Herron ◽  
John B. Anderson

AbstractPiston cores from the South Orkney Plateau penetrated overcompacted diamictons in water depths of up to 250 m. Detailed textural and petrological analyses of these diamictons indicate that they are basal tills. Seismic records from the plateau show a widespread surface of glacial erosion and provide additional evidence of an ice cap grounded to a depth of 250 m. Piston cores from the slope of the plateau penetrated diatomaceous muds resting directly on poorly sorted muds with very little to no biogenic material. The ice-rafted debris in these glacial-marine sediments is composed almost exclusively of material derived from the South Orkney Islands. This implies deposition beneath an ice shelf as opposed to iceberg rafting. In contrast, diatomaceous muds contain relatively abundant exotic iceberg-rafted material and reflect a glacial-maritime setting similar to that of today. The sharp contact separating diatomaceous surface sediments from basal tills and sub-ice shelf deposits indicates that the ice cap and ice shelf retreated from the plateau rapidly. Radiocarbon dates for diatomaceous muds from a glacial trough on the plateau indicate that the ice cap and ice shelf retreated from the plateau prior to 6000 to 7000 years ago. The homogeneity of surficial diatomaceous sediments suggests that sea ice conditions over the plateau have not changed radically since that time.


Sign in / Sign up

Export Citation Format

Share Document