Significance of sedimentary provenance reconstruction based on borehole records of the North China Plain for the evolution of the Yellow River

Geomorphology ◽  
2021 ◽  
pp. 108077
Author(s):  
Jilong Yang ◽  
Haifan Yuan ◽  
Yunzhuang Hu ◽  
Fu Wang
Author(s):  
David A. Pietz

Flowing through the North China Plain, one of China’s major agricultural regions, the Yellow River has long represented a challenge to Chinese governments to manage. Preventing floods has been an overriding concern for these states in order to maintain a semblance of ecological equilibrium on the North China Plain. This region’s environment is heavily influenced by seasonal fluctuations in precipitation, leading to a long history of famine, particularly in the late 19th and early 20th centuries when water management structures disintegrated with the deterioration of the imperial system. In the 20th century, new civil and hydraulic engineering techniques and technologies held the promise for enhanced management of the region’s waterways. After 1949, the new government of the People’s Republic used a hybrid approach consisting of the tenets of multipurpose water management combined with the tools of mass mobilization that were hallmarks of the Chinese Communist Party. The wide-ranging exploitation of surface and groundwater resources during the Maoist period left a long shadow for the post-Mao period that witnessed rapid consumption of water to fuel agricultural, industrial, and urban reforms. The challenge for the contemporary state in China is creating a system of water allocation through increased supply and demand management that can sustain the economic and social transformations of the era.


2020 ◽  
Vol 546 ◽  
pp. 109691 ◽  
Author(s):  
Guoqiao Xiao ◽  
Yuqi Sun ◽  
Jilong Yang ◽  
Qiuzhen Yin ◽  
Guillaume Dupont-Nivet ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 562 ◽  
Author(s):  
Shuai Liu ◽  
Weiping Wang ◽  
Shisong Qu ◽  
Yan Zheng ◽  
Wenliang Li

The North China Plain is the main grain production district in China, with a large area of well irrigation resulting in a large groundwater depression cone. In the 1970s and 1980s, small-scale managed aquifer recharge (MAR) projects were developed to recharge shallow groundwater, which played an important role in ensuring stable and high crop yields. MAR projects are divided into 10 types based on local water conservancy characteristics. The combined use of well–canal irrigation has been widespread in the Yellow River Irrigation District of Shandong Province for nearly 40 years, where canals play multiple roles of transporting and storing Yellow River water or local surface water, recharging groundwater and providing canal irrigation. Moreover, the newly developed open channel–underground perforated pipe–shaft–water saving irrigation system can further expand the scope and amount of groundwater recharge and prevent system clogging through three measures. Finally, an adaptability zoning evaluation system of water spreading has been established in Liaocheng City of Shandong Province based on the following five factors: groundwater depth, thickness of fine sand, specific yield, irrigation return flow, and groundwater extraction intensity. The results show that MAR is more adaptable to the western region than to the eastern and central regions.


Author(s):  
Min Xue ◽  
Jianzhong Ma ◽  
Guiqian Tang ◽  
Shengrui Tong ◽  
Bo Hu ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Gangqiang Zhang ◽  
Wei Zheng ◽  
Wenjie Yin ◽  
Weiwei Lei

The launch of GRACE satellites has provided a new avenue for studying the terrestrial water storage anomalies (TWSA) with unprecedented accuracy. However, the coarse spatial resolution greatly limits its application in hydrology researches on local scales. To overcome this limitation, this study develops a machine learning-based fusion model to obtain high-resolution (0.25°) groundwater level anomalies (GWLA) by integrating GRACE observations in the North China Plain. Specifically, the fusion model consists of three modules, namely the downscaling module, the data fusion module, and the prediction module, respectively. In terms of the downscaling module, the GRACE-Noah model outperforms traditional data-driven models (multiple linear regression and gradient boosting decision tree (GBDT)) with the correlation coefficient (CC) values from 0.24 to 0.78. With respect to the data fusion module, the groundwater level from 12 monitoring wells is incorporated with climate variables (precipitation, runoff, and evapotranspiration) using the GBDT algorithm, achieving satisfactory performance (mean values: CC: 0.97, RMSE: 1.10 m, and MAE: 0.87 m). By merging the downscaled TWSA and fused groundwater level based on the GBDT algorithm, the prediction module can predict the water level in specified pixels. The predicted groundwater level is validated against 6 in-situ groundwater level data sets in the study area. Compare to the downscaling module, there is a significant improvement in terms of CC metrics, on average, from 0.43 to 0.71. This study provides a feasible and accurate fusion model for downscaling GRACE observations and predicting groundwater level with improved accuracy.


Sign in / Sign up

Export Citation Format

Share Document