orbital welding
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)



Author(s):  
Budi Suhendro ◽  
Landung Malik Antoro ◽  
Suroso Suroso

<p class="AbstractEnglish"><strong>Abstract:</strong> Orbital welding motion in welding for joining pipes or cylinders, has a circular or circular motion that includes horizontal or vertical motion. The orbital velocity for a welding gun is expected to have a steady and stable velocity. Therefore, the aim of this research is to design a control system to control the movement of a stepper motor in orbital welding using LabVIEW software and Arduino Mega 2560 hardware. , this system requires LabVIEW software and hardware in the form of an Arduino Mega 2560, and a TB6600 driver to control the movement of the actuator or stepper motor. The movement of the stepper motor in this welding is divided into 2 segments. Segment 1 moves from an angle of 0º-180º in a clockwise motion and segment 2 moves from an angle of 0º-180º in a counter clockwise motion. In this study, 10 variations of speed were used to determine the appropriate movement or speed for circular welding. This speed variation starts from a frequency of 1000-5500 Hz. From the RSME test that has been carried out, the results obtained with low error values at frequencies of 1000 Hz and 1500 Hz with error values of 0.325 and 0.175. Meanwhile, from the test of average speed or RPM, the results obtained successively from the frequency of 1000 Hz-5500 Hz, namely 3 rpm, 6 rpm, 6,024 rpm, 8.975 rpm, 9.897 rpm, 12.057 rpm, 15.09 rpm, 14.915 rpm, and 17.93 rpm.</p><p class="AbstrakIndonesia"><strong>Abstrak:</strong> Gerak pengelasan orbital pada pengelasan untuk penyambungan pipa atau silinder, mempunyai arah gerak mengitari atau melingkar yang mencakup gerak horizontal atau gerak vertikal. Kecepatan gerak orbital untuk sebuah welding gun diharapkan mempunyai kecepatan yang tetap dan stabil. Oleh karena itu, tujuan dari penelitian ini adalah membuat rancangbangun sistem kontrol pengendalian pergerakan motor stepper pada orbital welding menggunakan software LabVIEW dan hardware Arduino Mega 2560. Sebagai sumber tenaga gerak dari aktuator berupa motor stepper, agar dapat mengendalikan kecepatan dan arah sesuai dengan kebutuhan gerak dari motor, sistem ini membutuhkan perangkat lunak LabVIEW dan perangkat keras berupa Arduino Mega 2560, dan driver TB6600 untuk mengatur gerakan pada aktuator atau motor stepper. Pergerakan motor stepper dalam pengelasan ini terbagi menjadi 2 segment. Segment 1 bergerak dari sudut 0º-180º dengan pergerakan searah jarum jam dan segment 2 bergerak dari sudut 0º-180º dengan pergerakan berlawanan arah jarum jam. Pada penelitian ini dilakukan 10 variasi kecepatan yang berguna untuk menentukan pergerakan atau kecepatan yang sesuai untuk pengelasan melingkar. Variasi kecepatan ini dimulai dari frekuensi 1000-5500 Hz. Dari pengujian RSME yang telah dilakukan didapatkan hasil dengan nilai error yang rendah pada frekuensi 1000 Hz dan 1500 Hz dengan nilai error sebesar 0,325 dan 0,175. Sedangkan dari pengujian kecepatan atau RPM rata-rata didapatkan hasil secara berturut-turut dari frekuensi 1000 Hz-5500 Hz yaitu 3 rpm, 6 rpm, 6,024 rpm, 8,975 rpm, 9,897 rpm, 12,057 rpm, 15,09 rpm, 14,915 rpm, dan 17,93 rpm.</p>



2020 ◽  
Author(s):  
Guillermo Alvarez Bestard ◽  
Sadek Crisostomo Absi Alfaro

Automatic control of the welding process is complex due to its nonlinear and stochastic behavior and the difficulty for measuring the principal magnitudes and closing the control loop. Fusion welds involve melting and subsequent solidification of one or more materials. The geometry of the weld bead is a good indicator of the melting and solidification process, so its control is essential to obtain quality junctions. Different sensing, modeling, estimation, and control techniques are used to overcome this challenge, but most of the studies are using static single-input/single-output models of the process and focusing on the flat welding position. However, theory and practice demonstrate that dynamic models are the best representation to obtain satisfactory control performance, and multivariable techniques reduce the effect of interactions between control loops in the process. Also, many industrial applications need to control orbital welding. In this chapter, the above topics are discussed.



2020 ◽  
Vol 188 ◽  
pp. 104229
Author(s):  
Régis Henrique Gonçalves e Silva ◽  
Mateus Barancelli Schwedersky ◽  
Álisson Fernandes da Rosa
Keyword(s):  


2020 ◽  
Vol 989 ◽  
pp. 766-771 ◽  
Author(s):  
Gia Viet Ngo

Welding of small-diameter pipelines made of carbon and low-alloy steels is highly demanded in various industries. However, there is practically no scientific literature covering all methods of welding of such pipelines. This article analyzes the available literature, as well as the authors' own developments. The survey showed the most common non-consumable electrode welding technology in inert gases. The main points of non-consumable electrode welding technology in inert gases, as well as the development of welding of small-diameter pipelines from carbon and low-alloy steels, are presented and structured.



2020 ◽  
Vol 92 (3) ◽  
pp. 47-53
Author(s):  
Jacek Górka ◽  
Mateusz Przybyła ◽  
Andrzej Chudzio ◽  
Dariusz Ładak ◽  
Marcin Szmul

The article presents the method of qualifying orbital welding technology using the TIG (142) method of the perforated bottom heat exchanger made of steel A516M (Grade 485) explosively clad with titanium B265 (Grade 1) with titanium pipes B338 (Grade 2) with a diameter of 34.93 mm and thickness 0.7 mm. Based on preliminary tests, welding technologies have been developed that meet the acceptance criteria for acceptance requirements. Qualification of the developed technology and welding parameters that were used during welding was carried out in accordance with PN-EN ISO 15614 Specification and qualification of metal welding technology, welding technology testing, Part 8: Welding of tubes with perforated bottom. This standard specifies the requirements for the qualification of automatic arc welding technology, metal pipe joints with perforated bottom by means of technology testing.



2020 ◽  
Vol 27 ◽  
pp. 2964-2969
Author(s):  
Nitish Kumar Singh ◽  
Sharad K. Pradhan


Author(s):  
Eduardo José Lima ◽  
Henrique Augusto de Matos Souza ◽  
Kassio Maciel Kienitz ◽  
Frederico Allevato Ramalho Filho


2019 ◽  
Vol 19 (3) ◽  
pp. 55-64 ◽  
Author(s):  
J. Górka ◽  
M. Przybyła ◽  
M. Szmul ◽  
A. Chudzio ◽  
D. Ładak

AbstractThe article presents problems accompanying the industrial TIG welding (142) of a heat exchanger perforated bottom made of steel clad with titanium B265 grade 1 with tubes made of titanium B338 grade 2. Research-related tests involved the making of test plates containing simulated imperfections formed during orbital welding. The above-named imperfections resulted from insufficient gas shielding during the welding process, the improper positioning of the tungsten electrode (excessively large or overly small circumference, around which the orbital welding process was performed), an excessive electrode travel rate being the consequence of an improperly set welding programme as well as excessively high welding current. Initial tests enabled the development of the orbital TIG welding of titanium tubes with the perforated bottom made of titanium-clad steel, satisfying acceptance criteria applied during commissioning.



Sign in / Sign up

Export Citation Format

Share Document