beta carbonic anhydrase
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Linda J. Urbański ◽  
Andrea Angeli ◽  
Vasyl V. Mykuliak ◽  
Latifeh Azizi ◽  
Marianne Kuuslahti ◽  
...  

Abstract Trichomonas vaginalis is a unicellular parasite and responsible for one of the most common sexually transmittable infections worldwide, trichomoniasis. Carbonic anhydrases (CAs) are enzymes found in all lifeforms and are known to play a vital role in many biochemical processes in organisms including the maintenance of acid–base homeostasis. To date, eight evolutionarily divergent but functionally convergent forms of CAs (α, β, γ, δ, ζ, η, θ, and ι) have been discovered. The human genome contains only α-CAs, whereas many clinically significant pathogens express only β-CAs and/or γ-CAs. The characterization of pathogenic β- and γ-CAs provides important knowledge for targeting these biomolecules to develop novel anti-invectives against trichomoniasis. Here, we report the recombinant production and characterization of the second β-CA of T. vaginalis (TvaCA2). Light scattering analysis revealed that TvaCA2 is a dimeric protein, which was further supported with in silico modeling, suggesting similar structures between TvaCA2 and the first β-CA of T. vaginalis (TvaCA1). TvaCA2 exhibited moderate catalytic activity with the following kinetic parameters: kcat of 3.8 × 105 s−1 and kcat/KM of 4.4 × 107 M−1 s−1. Enzyme activity inhibition was studied with a set of clinically used sulfonamides and sulfonamide derivates. Twenty-seven out of the 39 compounds resulted in inhibition with a nanomolar range. These initial results encourage for future work entailing the design of more potent inhibitors against TvaCA2, which may provide new assets to fight trichomoniasis. Key messages • Protozoan parasite Trichomonas vaginalis has two β-carbonic anhydrases (TvaCA1/2). • TvaCA1/TvaCA2 represents promising targets for antitrichomonal drug development. • TvaCA2 is a dimer of 20.3 kDa and possesses moderate catalytic activity. • The most efficient inhibitor was clinical drug acetazolamide with KI of 222.9 nM. • The 39 tested sulfonamides form the basis for the design of more potent inhibitors.


2021 ◽  
Author(s):  
Claudiu T. Supuran ◽  
Anna Di Fiore ◽  
Seppo Parkkila ◽  
Giuseppina De Simone

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2564 ◽  
Author(s):  
Sonia Del Prete ◽  
Viviana De Luca ◽  
Alessio Nocentini ◽  
Andrea Scaloni ◽  
Margaret D. Mastrolorenzo ◽  
...  

The interconversion of CO2 and HCO3− is catalyzed by a superfamily of metalloenzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1), which maintain the equilibrium between dissolved inorganic CO2 and HCO3−. In the genome of Escherichia coli, a Gram-negative bacterium typically colonizing the lower intestine of warm-blooded organisms, the cyn operon gene includes the CynT gene, encoding for a β-CA, and CynS gene, encoding for the cyanase. CynT (β-CA) prevents the depletion of the cellular bicarbonate, which is further used in the reaction catalyzed by cyanase. A second β-CA (CynT2 or Can or yadF), as well as a γ and ι-CAs were also identified in the E. coli genome. CynT2 is essential for bacterial growth at atmospheric CO2 concentration. Here, we characterized the kinetic properties and the anion inhibition profiles of recombinant CynT2. The enzyme showed a good activity for the physiological CO2 hydratase reaction with the following parameters: kcat = 5.3 × 105 s−1 and kcat/KM = of 4.1 × 107 M−1 s−1. Sulfamide, sulfamate, phenylboronic acid, phenylarsonic acid, and diethyldithiocarbamate were the most effective CynT2 inhibitors (KI = 2.5 to 84 µM). The anions allowed for a detailed understanding of the interaction of inhibitors with the amino acid residues surrounding the catalytic pocket of the enzyme and may be used as leads for the design of more efficient and specific inhibitors.


2020 ◽  
Vol 35 (1) ◽  
pp. 1292-1299 ◽  
Author(s):  
Linda J. Urbański ◽  
Anna Di Fiore ◽  
Latifeh Azizi ◽  
Vesa P. Hytönen ◽  
Marianne Kuuslahti ◽  
...  

2018 ◽  
Vol 33 (1) ◽  
pp. 359-363 ◽  
Author(s):  
Daniela Vullo ◽  
Leo Syrjänen ◽  
Marianne Kuuslahti ◽  
Seppo Parkkila ◽  
Claudiu T. Supuran

Author(s):  
Betul Kacar ◽  
Lionel Guy ◽  
Eric Smith ◽  
John Baross

Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the beta-carbonic anhydrase protein. We assess how carbonic anhydrase proteins meet our selection criteria for reconstructing ancient biosignatures in the laboratory, which we term palaeophenotype reconstruction. This article is part of the themed issue ‘Reconceptualizing the origins of life’.


2017 ◽  
Author(s):  
Betul Kacar ◽  
Lionel Guy ◽  
Eric Smith ◽  
John Baross

SummaryTwo datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physicochemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its ∼3.8 billion years of history on Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behavior of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can identify a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can extant life be used to reconstruct ancestral phenotypes? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the lab to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and to then link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first-step beyond single molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the beta-carbonic anhydrase protein. We assess how carbonic anhydrase proteins meet our selection criteria for reconstructing ancient biosignatures in the lab, which we term paleophenotype reconstruction.


2015 ◽  
Vol 23 (15) ◽  
pp. 4831-4838 ◽  
Author(s):  
Melissa A. Pinard ◽  
Shalaka R. Lotlikar ◽  
Christopher D. Boone ◽  
Daniela Vullo ◽  
Claudiu T. Supuran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document