mosquito anopheles gambiae
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 22)

H-INDEX

60
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Pablo Mier ◽  
Jean-Fred Fontaine ◽  
Marah Stoldt ◽  
Romain Libbrecht ◽  
Carlotta Martelli ◽  
...  

The gene family of insect odorant receptors (ORs) has greatly expanded in the course of evolution. ORs allow insects to detect volatile chemicals and therefore play an important role in social interactions, the detection of enemies and preys, and during foraging. The sequences of several thousand ORs are known, but their specific function or ligands have been identified only for very few of them. To advance the functional characterization of ORs, we compiled, curated and aligned the sequences of 3,902 ORs from 21 insect species. We identified the amino acid positions that best predict the response to ligands using machine learning on sets of functionally characterized proteins from the fly Drosophila melanogaster, the mosquito Anopheles gambiae and the ant Harpegnathos saltator. We studied the conservation of these predicted relevant residues across all OR subfamilies and show that the subfamilies that expanded strongly in social insects exhibit high levels of conservation in their binding sites. This indicates that ORs of social insect families are typically finely tuned and exhibit a sensitivity to very similar odorants. Our novel approach provides a powerful tool to use functional information from a limited number of genes to investigate the functional evolution of large gene families.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefano S. Garcia Castillo ◽  
Kevin S. Pritts ◽  
Raksha S. Krishnan ◽  
Laura C. Harrington ◽  
Garrett P. League

AbstractThe mosquito Anopheles gambiae is a major African malaria vector, transmitting parasites responsible for significant mortality and disease burden. Although flight acoustics are essential to mosquito mating and present promising alternatives to insecticide-based vector control strategies, there is limited data on mosquito flight tones during swarming. Here, for the first time, we present detailed analyses of free-flying male and female An. gambiae flight tones and their harmonization (harmonic convergence) over a complete swarm sequence. Audio analysis of single-sex swarms showed synchronized elevation of male and female flight tones during swarming. Analysis of mixed-sex swarms revealed additional 50 Hz increases in male and female flight tones due to mating activity. Furthermore, harmonic differences between male and female swarm tones in mixed-sex swarms and in single-sex male swarms with artificial female swarm audio playback indicate that frequency differences of approximately 50 Hz or less at the male second and female third harmonics (M2:F3) are maintained both before and during mating interactions. This harmonization likely coordinates male scramble competition by maintaining ideal acoustic recognition within mating pairs while acoustically masking phonotactic responses of nearby swarming males to mating females. These findings advance our knowledge of mosquito swarm acoustics and provide vital information for reproductive control strategies.


2021 ◽  
Vol 50 (9) ◽  
pp. 2579-2589
Author(s):  
Micheal Olaolu Arowolo ◽  
Marion Olubunmi Adebiyi ◽  
Ayodele Ariyo Adebiyi

RNA-Seq data are utilized for biological applications and decision making for classification of genes. Lots of work in recent time are focused on reducing the dimension of RNA-Seq data. Dimensionality reduction approaches have been proposed in fetching relevant information in a given data. In this study, a novel optimized dimensionality reduction algorithm is proposed, by combining an optimized genetic algorithm with Principal Component Analysis and Independent Component Analysis (GA-O-PCA and GAO-ICA), which are used to identify an optimum subset and latent correlated features, respectively. The classifier uses Decision tree on the reduced mosquito anopheles gambiae dataset to enhance the accuracy and scalability in the gene expression analysis. The proposed algorithm is used to fetch relevant features based from the high-dimensional input feature space. A feature ranking and earlier experience are used. The performances of the model are evaluated and validated using the classification accuracy to compare existing approaches in the literature. The achieved experimental results prove to be promising for feature selection and classification in gene expression data analysis and specify that the approach is a capable accumulation to prevailing data mining techniques.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 634
Author(s):  
Fiza Arshad ◽  
Arvind Sharma ◽  
Charleen Lu ◽  
Monika Gulia-Nuss

RNA-interference (RNAi) is a standard technique for functional genomics in adult mosquitoes. However, RNAi in immature, aquatic mosquito stages has been challenging. Several studies have shown successful larval RNAi, usually in combination with a carrier molecule. Except for one study in malaria mosquito, Anopheles gambiae, none of the previous studies has explored RNAi in mosquito pupae. Even in the study that used RNAi in pupae, double stranded RNA (dsRNA) was introduced by microinjection. Here, we describe a successful method by soaking pupae in water containing dsRNA without any carrier or osmotic challenge. The knockdown persisted into adulthood. We expect that this simple procedure will be useful in the functional analysis of genes that highly express in pupae or newly emerged adults.


Author(s):  
Micheal Olaolu Arowolo ◽  
Marion O. Adebiyi ◽  
Ayodele A. Adebiyi ◽  
Charity Aremu

Malaria parasites introduce outstanding life-phase variations as they grow across multiple atmospheres of the mosquito vector. There are transcriptomes of several thousand different parasites. (RNA-seq) Ribonucleic acid sequencing is a prevalent gene expression tool leading to better understanding of genetic interrogations. RNA-seq measures transcriptions of expressions of genes. Data from RNA-seq necessitate procedural enhancements in machine learning techniques. Researchers have suggested various approached learning for the study of biological data. This study works on ICA feature extraction algorithm to realize dormant components from a huge dimensional RNA-seq vector dataset, and estimates its classification performance, Ensemble classification algorithm is used in carrying out the experiment. This study is tested on RNA-Seq mosquito anopheles gambiae dataset. The results of the experiment obtained an output metrics with a 93.3% classification accuracy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Micheal Olaolu Arowolo ◽  
Marion Olubunmi Adebiyi ◽  
Ayodele Ariyo Adebiyi ◽  
Oludayo Olugbara

AbstractRNA-Seq data are utilized for biological applications and decision making for the classification of genes. A lot of works in recent time are focused on reducing the dimension of RNA-Seq data. Dimensionality reduction approaches have been proposed in the transformation of these data. In this study, a novel optimized hybrid investigative approach is proposed. It combines an optimized genetic algorithm with Principal Component Analysis and Independent Component Analysis (GA-O-PCA and GAO-ICA), which are used to identify an optimum subset and latent correlated features, respectively. The classifier uses KNN on the reduced mosquito Anopheles gambiae dataset, to enhance the accuracy and scalability in the gene expression analysis. The proposed algorithm is used to fetch relevant features based on the high-dimensional input feature space. A fast algorithm for feature ranking is used to select relevant features. The performances of the model are evaluated and validated using the classification accuracy to compare existing approaches in the literature. The achieved experimental results prove to be promising for selecting relevant genes and classifying pertinent gene expression data analysis by indicating that the approach is capable of adding to prevailing machine learning methods.


Author(s):  
Micheal Olaolu Arowolo ◽  
Marion O. Adebiyi ◽  
Ayodele A. Adebiyi ◽  
Olatunji J. Okesola

<p>Malaria parasites accept uncertain, inconsistent life span breeding through vectors of mosquitoes stratospheres. Thousands of different transcriptome parasites exist. A prevalent ribonucleic acid sequencing (RNA-seq) technique for gene expression has brought about enhanced identifications of genetical queries. Computation of RNA-seq gene expression data transcripts requires enhancements using analytical machine learning procedures. Numerous learning approaches have been adopted for analyzing and enhancing the performance of biological data and machines. In this study, a genetic algorithm dimensionality reduction technique is proposed to fetch relevant information from a huge dimensional RNA-seq dataset, and classification uses Ensemble classification algorithms. The experiment is performed using a mosquito Anopheles gambiae dataset with a classification accuracy of 81.7% and 88.3%.</p>


2021 ◽  
Author(s):  
Katie Willis ◽  
Austin Burt

Synthetic gene drive constructs could, in principle, provide the basis for highly efficient interventions to control disease vectors and other pest species. This efficiency derives in part from leveraging natural processes of dispersal and gene flow to spread the construct and its impacts from one population to another. However, sometimes (for example, with invasive species) only specific populations are in need of control, and impacts on non-target populations would be undesirable. Many gene drive designs use nucleases that recognise and cleave specific genomic sequences, and one way to restrict their spread would be to exploit sequence differences between target and non-target populations. In this paper we propose and model a series of low threshold double drive designs for population suppression, each consisting of two constructs, one imposing a reproductive load on the population and the other inserted into a differentiated locus and controlling the drive of the first. Simple deterministic, discrete-generation computer simulations are used to assess the alternative designs. We find that the simplest double drive designs are significantly more robust to pre-existing cleavage resistance at the differentiated locus than single drive designs, and that more complex designs incorporating sex ratio distortion can be more efficient still, even allowing for successful control when the differentiated locus is neutral and there is up to 50% pre-existing resistance in the target population. Similar designs can also be used for population replacement, with similar benefits. A population genomic analysis of PAM sites in island and mainland populations of the malaria mosquito Anopheles gambiae indicates that the differentiation needed for our methods to work can exist in nature. Double drives should be considered when efficient but localised population genetic control is needed and there is some genetic differentiation between target and non-target populations.


Cryobiology ◽  
2020 ◽  
Author(s):  
Jacob B. Campbell ◽  
Andrew Dosch ◽  
Catherine M. Hunt ◽  
Ellen M. Dotson ◽  
Mark Q. Benedict ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document