gyrosynchrotron emission
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 922 (2) ◽  
pp. 103
Author(s):  
Alexey A. Kuznetsov ◽  
Gregory D. Fleishman

Abstract The past decade has seen a dramatic increase in practical applications of microwave gyrosynchrotron emission for plasma diagnostics and three-dimensional modeling of solar flares and other astrophysical objects. This breakthrough became possible due to an apparently minor, technical development of fast gyrosynchrotron codes, which enormously reduced the computation time needed to calculate a single spectrum, while preserving the accuracy of the computation. However, the available fast codes are limited in that they can only be used for a factorized distribution over the energy and pitch angle, while the distribution of electrons over energy or pitch angle is limited to a number of predefined analytical functions. In realistic simulations, these assumptions do not hold; thus, the codes free from the mentioned limitations are called for. To remedy this situation, we extended our fast codes to work with an arbitrary input distribution function of radiating electrons. We accomplished this by implementing fast codes for a distribution function described by an arbitrary numerically defined array. In addition, we removed several other limitations of the available fast codes and improved treatment of the free–free component. The ultimate fast codes presented here allow for an arbitrary combination of the analytically and numerically defined distributions, which offers the most flexible use of the fast codes. We illustrate the code with a few simple examples.


2021 ◽  
Author(s):  
Devojyoti Kansabanik ◽  
Surajit Mondal ◽  
Divya Oberoi ◽  
Angelos Vourlidas

<p>Coronal Mass Ejections (CMEs) are large-scale explosive eruptions of magnetised plasma from the Sun into the Heliosphere. Measuring the physical parameters of CMEs is crucial for understanding their physics and for assessing their geo-effectiveness. Radio observations offer the most direct means for estimating these plasma parameters when gyrosynchrotron (GS) emission is detected from the CME plasma. However, since the first detection by Bastian et al.2001, only a handful of studies have successfully detected GS emission from CME plasma. This is usually attributed to the challenges involved in obtaining the high dynamic range imaging required for observing this faint gyrosynchrotron emission in the vicinity of active solar emissions.</p><p>The newly developed imaging pipeline (Mondal et al., 2019) designed for the data from Murchison Widefield Array (MWA) marks a significant improvement in metrewave solar radio imaging. Our work suggests that we should now be able to routinely detect GS emission from CME plasma. We present an example where we have successfully detected radio emission from CME plasma and modelled it as GS emission, leading to reliable estimates of CME magnetic field as well as the distribution of energetic electrons (Mondal et al. 2020). In a different example we are able to detect the radio emission from the CME plasma out to as far as 8.3 solar radii. We find that the observed spectra are not always consistent with simple GS models. This highlights that more complicated physics might be at play and points to the need for building more detailed models for interpreting these emissions. We hope that with the availability of polarimetric imaging capability, which we are in the process of developing, this technique will provide a robust way to routinely measure CME magnetic fields along with its other physical parameters. We note that these are the weakest detections of GS emissions from CME plasma reported yet.</p>


2021 ◽  
Author(s):  
Nicole Vilmer ◽  
Sophie Musset

<p>Efficient electron (and ion) acceleration is produced in association with solar flares. Energetic particles play a major role in the active Sun since they contain a large amount of the magnetic energy released during flares. Energetic electrons (and ions) interact with the solar atmosphere and produce high-energy X-rays and γ-rays. Energetic electrons also produce radio emission in a large frequency band through gyrosynchrotron emission processes in the magnetic fields of flaring active regions and conversion of plasma waves when e.g. propagating to the high corona towards the interplanetary medium. It is currently admitted that solar flares are powered by magnetic energy previously stored in the coronal magnetic field and that magnetic energy release is likely to occur on coronal currents sheets along regions of strong gradient of magnetic connectivity. However, understanding the connection between particle acceleration processes and the topology of the complex magnetic structures present in the corona is still a challenging issue. In this talk, we shall review some recent results derived from X-ray and radio imaging spectroscopy of solar flares bringing some new observational constraints on the localization of HXR/radio sources with respect to current sheets, termination shocks in the corona derived from EUV observations.</p>


2019 ◽  
Vol 871 (1) ◽  
pp. 22 ◽  
Author(s):  
Zhao Wu ◽  
Yao Chen ◽  
Hao Ning ◽  
Xiangliang Kong ◽  
Jeongwoo Lee

Author(s):  
Tom Van Doorsselaere ◽  
Patrick Antolin ◽  
Ding Yuan ◽  
Veronika Reznikova ◽  
Norbert Magyar

Sign in / Sign up

Export Citation Format

Share Document