cosmic neutrino background
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Daniel Green ◽  
David E. Kaplan ◽  
Surjeet Rajendran

Abstract The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a number of cosmological probes. In addition, the non-zero mass of neutrinos alters the growth of structure at late times, and this signature is a target for a number of upcoming surveys. These measurements are sensitive to the physics of the neutrino and could be used to probe physics beyond the standard model in the neutrino sector. We explore an intriguing possibility where light right-handed neutrinos are coupled to all, or a fraction of, the dark matter through a mediator. In a wide range of parameter space, this interaction only becomes important at late times and is uniquely probed by late-time cosmological observables. Due to this coupling, the dark matter and neutrinos behave as a single fluid with a non-trivial sound speed, leading to a suppression of power on small scales. In current and near-term cosmological surveys, this signature is equivalent to an increase in the sum of the neutrino masses. Given current limits, we show that at most 0.5% of the dark matter could be coupled to neutrinos in this way.


2021 ◽  
Vol 127 (13) ◽  
Author(s):  
José Luis Bernal ◽  
Andrea Caputo ◽  
Francisco Villaescusa-Navarro ◽  
Marc Kamionkowski

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Victor A. S. V. Bittencourt ◽  
Alex E. Bernardini ◽  
Massimo Blasone

AbstractMassive Dirac particles are a superposition of left and right chiral components. Since chirality is not a conserved quantity, the free Dirac Hamiltonian evolution induces chiral quantum oscillations, a phenomenon related to the Zitterbewegung, the trembling motion of free propagating particles. While not observable for particles in relativistic dynamical regimes, chiral oscillations become relevant when the particle’s rest energy is comparable to its momentum. In this paper, we quantify the effect of chiral oscillations on the non-relativistic evolution of a particle state described as a Dirac bispinor and specialize our results to describe the interplay between chiral and flavor oscillations of non-relativistic neutrinos: we compute the time-averaged survival probability and observe an energy-dependent depletion of the quantity when compared to the standard oscillation formula. In the non-relativistic regime, this depletion due to chiral oscillations can be as large as 40$$\%$$ % . Finally, we discuss the relevance of chiral oscillations in upcoming experiments which will probe the cosmic neutrino background.


Author(s):  
Apriadi Salim Adam ◽  
Nicholas J Benoit ◽  
Yuta Kawamura ◽  
Yamato Matsuo ◽  
Takuya Morozumi ◽  
...  

Abstract We revisit the time evolution of the lepton family number for a SU(2) doublet consisting of a neutrino and a charged lepton. The lepton family number is defined through the weak basis of the SU(2) doublet, where the charged lepton mass matrix is real and diagonal. The lepton family number carried by the neutrino is defined by the left-handed current of the neutrino family. For this work we assume the neutrinos have Majorana mass. This Majorana mass term is switched on at time t = 0 and the lepton family number is evolved. Since the operator in the avor eigenstate is continuously connected to that of the mass eigenstate, the creation and annihilation operators for the two eigenstates are related to each other. We compute the time evolution of all lepton family numbers by choosing a specific initial avor eigenstate for a neutrino. The evolution is studied for relativistic and nonrelativistic neutrinos. The nonrelativistic region is of particular interest for the Cosmic Neutrino Background predicted from big bang models. In that region we find the lepton family numbers are sensitive to Majorana and Dirac phases, the absolute mass, and mass hierarchy of neutrinos.


Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 203
Author(s):  
Daniel Boriero ◽  
Dominik J. Schwarz ◽  
Hermano Velten

We propose that gravitational interactions of cosmic neutrinos with the statistically homogeneous and isotropic fluctuations of space-time lead to decoherence. This working hypothesis, which we describe by means of a Lindblad operator, is applied to the system of two- and three-flavour neutrinos undergoing vacuum oscillations and the consequences are investigated. As a result of this decoherence we find that the neutrino entropy would increase as a function of initial spectral distortions, mixing angles and charge-parity (CP)-violation phase. Subsequently we discuss the chances to discover such an increase observationally (in principle). We also present the expected flavour composition of the cosmic neutrino background after decoherence is completed. The physics of two- or three-flavour oscillation of cosmological neutrinos resembles in many aspects two- or three-level systems in atomic clocks, which were recently proposed by Weinberg for the study of decoherence phenomena.


Sign in / Sign up

Export Citation Format

Share Document