scholarly journals The sensory code within sense of time

2021 ◽  
Author(s):  
Sebastian Reinartz ◽  
Arash Fassihi ◽  
Luciano Paz ◽  
Francesca Pulecchi ◽  
Marco Gigante ◽  
...  

Sensory experiences are accompanied by the perception of the passage of time; a cell phone vibration, for instance, is sensed as brief or long. The neuronal mechanisms underlying the perception of elapsed time remain unknown1. Recent work agrees on a role for cortical processing networks2,3, however the causal function of sensory cortex in time perception has not yet been specified. We hypothesize that the mechanisms for time perception are embedded within primary sensory cortex and are thus governed by the basic rules of sensory coding. By recording and optogenetically modulating neuronal activity in rat vibrissal somatosensory cortex, we find that the percept of stimulus duration is dilated and compressed by optogenetic excitation and inhibition, respectively, during stimulus delivery. A second set of rats judged the intensity of tactile stimuli; here, optogenetic excitation amplified the intensity percept, demonstrating sensory cortex to be the common gateway to both time and stimulus feature processing. The coding algorithms for sensory features are well established4–10. Guided by these algorithms, we formulated a 3–stage model beginning with the membrane currents evoked by vibrissal and optogenetic drive and culminating in the representation of perceived time; this model successfully replicated rats′ choices. Our finding that stimulus coding is intrinsic to sense of time disagrees with dedicated pacemaker-accumulator operation models11–13, where sensory input acts only to trigger the onset and offset of the timekeeping process. Time perception is thus as deeply intermeshed within the sensory processing pathway as is the sense of touch itself14,15 and can now be treated through the computational language of sensory coding. The model presented here readily generalizes to humans14,16 and opens up new approaches to understanding the time misperception at the core of numerous neurological conditions17,18.

1979 ◽  
Vol 42 (6) ◽  
pp. 1538-1556 ◽  
Author(s):  
J. E. Kanz ◽  
L. B. Eberly ◽  
J. S. Cobbs ◽  
H. M. Pinsker

1. Central neuronal mechanisms of siphon withdrawal in Aplysia were studied for the first time in intact, freely behaving animals by means of population recordings from implanted whole-nerve cuff electrodes. Intracellular follow-up studies were then conducted when the same animal was reduced to a semi-intact preparation. 2. Background spontaneous activity in the siphon nerve consisted of low-frequency firing of a population of efferent units containing identified siphon motoneurons. 3. Spontaneous patterned bursts of efferent activity occurred irregularly and were associated with all-or-nothing contractions of the parapodia, gill, and siphon. Spontaneous bursts were due to centrally generated activity in the interneuron II (INT II) network, an oscillatory network with endogenous pacemaker properties. 4. In intact animals, even weak tactile stimuli to the siphon typically triggered an INTII burst shortly after the stimulus-locked efferent activity. Thus, the stimulus can phase-advance the INT II oscillator. In semi-intact preparations, short-latency INT II bursts were triggered less less frequently and required more intense stimuli. 5. With weak to moderate-intensity stimuli in intact animals, the presence of short-latency triggered INT II bursts largely determined the duration of the siphon component and amplitude of the gill component of the withdrawal reflex. 6. When stimuli were repeated over a range of interstimulus intervals (from 60 to 1 min), the likelihood of triggering a short-latency INT II burst die not change systematically. Thus, the ability of the siphon stimulus to stably entrain the all-or-none INT II component over a wide range of intervals will interact behaviorally with the decrement of the monosynaptic component of the reflex with repetition.


NeuroImage ◽  
2001 ◽  
Vol 13 (6) ◽  
pp. 1226
Author(s):  
Robert Meyer ◽  
Felix Blankenburg ◽  
Jan Ruben ◽  
Jessica Schwiemann ◽  
Sebastian Thees ◽  
...  

2012 ◽  
Vol 108 (5) ◽  
pp. 1278-1287 ◽  
Author(s):  
Rebekah L. Ward ◽  
Luke C. Flores ◽  
John F. Disterhoft

The barrel cortex (BC) is essential for the acquisition of whisker-signaled trace eyeblink conditioning and shows learning-related expansion of the trained barrels after the acquisition of a whisker-signaled task. Most previous research examining the role of the BC in learning has focused on anatomic changes in the layer IV representation of the cortical barrels. We studied single-unit extracellular recordings from individual neurons in layers V and VI of the BC as rabbits acquired the whisker-signaled trace eyeblink conditioning task. Neurons in layers V and VI in both conditioned and pseudoconditioned animals robustly responded to whisker stimulation, but neurons in conditioned animals showed a significant enhancement in responsiveness in concert with learning. Learning-related changes in firing rate occurred as early as the day of learning criterion within the infragranular layers of the primary sensory cortex.


2002 ◽  
Vol 87 (4) ◽  
pp. 2137-2148 ◽  
Author(s):  
Sean M. O'Connor ◽  
Rune W. Berg ◽  
David Kleinfeld

We tested if coherent signaling between the sensory vibrissa areas of cerebellum and neocortex in rats was enhanced as they whisked in air. Whisking was accompanied by 5- to 15-Hz oscillations in the mystatial electromyogram, a measure of vibrissa position, and by 5- to 20-Hz oscillations in the differentially recorded local field potential (∇LFP) within the vibrissa area of cerebellum and within the ∇LFP of primary sensory cortex. We observed that only 10% of the activity in either cerebellum or sensory neocortex was significantly phase-locked to rhythmic motion of the vibrissae; the extent of this modulation is in agreement with the results from previous single-unit measurements in sensory neocortex. In addition, we found that 40% of the activity in the vibrissa areas of cerebellum and neocortex was significantly coherent during periods of whisking. The relatively high level of coherence between these two brain areas, in comparison with their relatively low coherence with whisking per se, implies that the vibrissa areas of cerebellum and neocortex communicate in a manner that is incommensurate with whisking. To the extent that the vibrissa areas of cerebellum and neocortex communicate over the same frequency band as that used by whisking, these areas must multiplex electrical activity that is internal to the brain with activity that is that phase-locked to vibrissa sensory input.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Roberto Vincis ◽  
Alfredo Fontanini

A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations.


2020 ◽  
Vol 30 (8) ◽  
pp. 4662-4676
Author(s):  
Kevin J Monk ◽  
Simon Allard ◽  
Marshall G Hussain Shuler

Abstract The primary sensory cortex has historically been studied as a low-level feature detector, but has more recently been implicated in many higher-level cognitive functions. For instance, after an animal learns that a light predicts water at a fixed delay, neurons in the primary visual cortex (V1) can produce “reward timing activity” (i.e., spike modulation of various forms that relate the interval between the visual stimulus and expected reward). Local manipulations to V1 implicate it as a site of learning reward timing activity (as opposed to simply reporting timing information from another region via feedback input). However, the manner by which V1 then produces these representations is unknown. Here, we combine behavior, in vivo electrophysiology, and optogenetics to investigate the characteristics of and circuit mechanisms underlying V1 reward timing in the head-fixed mouse. We find that reward timing activity is present in mouse V1, that inhibitory interneurons participate in reward timing, and that these representations are consistent with a theorized network architecture. Together, these results deepen our understanding of V1 reward timing and the manner by which it is produced.


2008 ◽  
Vol 119 ◽  
pp. S43
Author(s):  
Simone Rossi ◽  
Monica Ulivelli ◽  
Alberto De Capua ◽  
Sabina Bartalini ◽  
Domenico Restuccia

2007 ◽  
Vol 7 ◽  
pp. 1922-1929 ◽  
Author(s):  
Tyge Dahl Hermansen ◽  
Søren Ventegodt ◽  
Isack Kandel

The structure of human consciousness is thought to be closely connected to the structure of cerebral cortex. One of the most appreciated concepts in this regard is the Szanthagothei model of a modular building of neo-cortex. The modules are believed to organize brain activity pretty much like a computer. We looked at examples in the literature and argue that there is no significant evidence that supports Szanthagothei's model. We discuss the use of the limited genetic information, the corticocortical afferents termination and the columns in primary sensory cortex as arguments for the existence of the cortex-module. Further, we discuss the results of experiments with Luminization Microscopy (LM) colouration of myalinized fibres, in which vertical bundles of afferent/efferent fibres that could support the cortex module are identified. We conclude that sensory maps seem not to be an expression for simple specific connectivity, but rather to be functional defined. We also conclude that evidence for the existence of the postulated module or column does not exist in the discussed material. This opens up for an important discussion of the brain as functionally directed by biological information (information-directed self-organisation), and for consciousness being closely linked to the structure of the universe at large. Consciousness is thus not a local phenomena limited to the brain, but a much more global phenomena connected to the wholeness of the world.


1957 ◽  
Vol 189 (1) ◽  
pp. 137-140
Author(s):  
Aaron J. Beller ◽  
Gidon F. Gestring ◽  
Dominick P. Purpura

Experiments were performed on intact unanesthetized-succinylcholine paralyzed cats in order to compare the effects of ablations of primary cortical regions on the ability to evoke generalized activation to specific sensory stimulation with those obtained by Bremer on encéphale isolé preparations. Bilateral destruction of the auditory or somatic sensory cortex in intact preparations does not block generalized activation to auditory or sciatic stimulation. It is concluded that in the presence of spinal afferent activity as exists in the intact preparation corticifugal influences arising in either the auditory or somatic sensory cortex are not necessary for the activation process that follows auditory or sciatic stimulation.


Sign in / Sign up

Export Citation Format

Share Document