scholarly journals Respiration aligns perception with neural excitability

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daniel S Kluger ◽  
Elio Balestrieri ◽  
Niko A Busch ◽  
Joachim Gross

Recent studies from the field of interoception have highlighted the link between bodily and neural rhythms during action, perception, and cognition. The mechanisms underlying functional body-brain coupling, however, are poorly understood, as are the ways in which they modulate behaviour. We acquired respiration and human magnetoencephalography (MEG) data from a near-threshold spatial detection task to investigate the trivariate relationship between respiration, neural excitability, and performance. Respiration was found to significantly modulate perceptual sensitivity as well as posterior alpha power (8 - 13 Hz), a well-established proxy of cortical excitability. In turn, alpha suppression prior to detected vs undetected targets underscored the behavioural benefits of heightened excitability. Notably, respiration-locked excitability changes were maximised at a respiration phase lag of around -30° and thus temporally preceded performance changes. In line with interoceptive inference accounts, these results suggest that respiration actively aligns sampling of sensory information with transient cycles of heightened excitability to facilitate performance.

2021 ◽  
Author(s):  
Daniel S. Kluger ◽  
Elio Balestrieri ◽  
Niko A. Busch ◽  
Joachim Gross

Recent studies from the field of interoception have highlighted the link between bodily and neural rhythms during action, perception, and cognition. The mechanisms underlying functional body-brain coupling, however, are poorly understood, as are the ways in which they modulate behaviour. We acquired respiration and human magnetoencephalography (MEG) data from a near-threshold spatial detection task to investigate the trivariate relationship between respiration, neural excitability, and performance. Respiration was found to significantly modulate perceptual sensitivity as well as posterior alpha power (8-13 Hz), a well-established proxy of cortical excitability. In turn, alpha suppression prior to detected vs undetected targets underscored the behavioural benefits of heightened excitability. Notably, respiration-locked excitability changes were maximised at a respiration phase lag of around -30 degrees and thus temporally preceded performance changes. In line with interoceptive inference accounts, these results suggest that respiration actively aligns sampling of sensory information with transient cycles of heightened excitability to facilitate performance.


2021 ◽  
pp. 108705472097279
Author(s):  
Alessio Bellato ◽  
Iti Arora ◽  
Puja Kochhar ◽  
Chris Hollis ◽  
Madeleine J. Groom

We investigated autonomic arousal, attention and response conflict, in ADHD and autism. Heart rate variability (HRV), and behavioral/electrophysiological indices of performance, were recorded during a task with low and high levels of response conflict in 78 children/adolescents (7–15 years old) with ADHD, autism, comorbid ADHD+autism, or neurotypical. ANOVA models were used to investigate effects of ADHD and autism, while a mediation model was tested to clarify the relationship between ADHD and slower performance. Slower and less accurate performance characterized ADHD and autism; however, atypical electrophysiological indices differently characterized these conditions. The relationship between ADHD and slower task performance was mediated by reduced HRV in response to the cue stimulus. Autonomic hypo-arousal and difficulties in mobilizing energetic resources in response to sensory information (associated with ADHD), and atypical electrophysiological indices of information processing (associated with autism), might negatively affect cognitive performance in those with ADHD+autism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sumiya Shibata ◽  
Tatsunori Watanabe ◽  
Yoshihiro Yukawa ◽  
Masatoshi Minakuchi ◽  
Ryota Shimomura ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) is a novel non-invasive brain stimulation technique that reduces cortical excitability at the stimulation site. We investigated the effects of tSMS over the left primary motor cortex (M1) for 20 min on the local electroencephalogram (EEG) power spectrum and interregional EEG coupling. Twelve right-handed healthy subjects participated in this crossover, double-blind, sham-controlled study. Resting-state EEG data were recorded for 3 min before the intervention and 17 min after the beginning of the intervention. The power spectrum at the left central electrode (C3) and the weighted phase lag index (wPLI) between C3 and the other electrodes was calculated for theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequencies. The tSMS significantly increased theta power at C3 and the functional coupling in the theta band between C3 and the parietal midline electrodes. The tSMS over the left M1 for 20 min exhibited modulatory effects on local cortical activity and interregional functional coupling in the theta band. The neural oscillations in the theta band may have an important role in the neurophysiological effects induced by tSMS over the frontal cortex.


NeuroImage ◽  
2011 ◽  
Vol 54 (2) ◽  
pp. 824-835 ◽  
Author(s):  
N. Novitskiy ◽  
J.R. Ramautar ◽  
K. Vanderperren ◽  
M. De Vos ◽  
M. Mennes ◽  
...  

Author(s):  
Matthew Westin ◽  
Ronald Dougherty ◽  
Christopher Depcik ◽  
Austin Hausmann ◽  
Charles Sprouse

The original use of the vehicle dashboard was to provide enough sensory information to inform the driver of the current engine and vehicle status and performance. Over time, it has evolved into an entertainment system that includes person-to-person communication, global positioning information, and the Internet, just to name a few. Each of these new features adds to the amount of information that drivers must absorb, leading to potential distraction and possible increases in the number and types of accidents. In order to provide an overview of these issues, this paper summarizes previous work on driver distraction and workload, demonstrating the importance of addressing those issues that compete for driver attention and action. In addition, a test platform vehicle is introduced which has the capability of assessing modified dashboards and consoles, as well as the ability to acquire relevant driving performance data. Future efforts with this test platform will be directed toward helping to resolve the critical tug-of-war between providing more information and entertainment while keeping drivers and their passengers safe. The long-term goal of this research is to evaluate the various technological innovations available for inclusion in the driving environment and determining how to optimize driver information delivery without excessive distraction and workload. The information presented herein is the first step in that effort of developing an adaptive distraction/workload management system that monitors performance metrics and provides selected feedback to drivers. The test platform (1973 VW Beetle converted to a plug-in series hybrid) can provide speed, location (GPS), 3-D acceleration, and rear proximity detection. The test drive route was a 2 km × 3 km city street circuit which took approximately 25 minutes to complete. Data is provided herein to demonstrate these capabilities. In addition, the platform has driver selectable layouts for the instrument cluster and console (LCD screens). The test platform is planned for use to determine driver preferences (e.g., dashboard/console configurations) and attention performance in addition to identifying optimal real-time feedback for drivers with different demographics.


2020 ◽  
Vol 32 (2) ◽  
pp. 187-200 ◽  
Author(s):  
Alessandro Benedetto ◽  
Maria Concetta Morrone ◽  
Alice Tomassini

Research in the last decade has undermined the idea of perception as a continuous process, providing strong empirical support for its rhythmic modulation. More recently, it has been revealed that the ongoing motor processes influence the rhythmic sampling of sensory information. In this review, we will focus on a growing body of evidence suggesting that oscillation-based mechanisms may structure the dynamic interplay between the motor and sensory system and provide a unified temporal frame for their effective coordination. We will describe neurophysiological data, primarily collected in animals, showing phase-locking of neuronal oscillations to the onset of (eye) movements. These data are complemented by novel evidence in humans, which demonstrate the behavioral relevance of these oscillatory modulations and their domain-general nature. Finally, we will discuss the possible implications of these modulations for action–perception coupling mechanisms.


Author(s):  
Jonathan Hurter ◽  
William Aubrey ◽  
Sushunova G. Martinez ◽  
Crystal S. Maraj ◽  
Irwin Hudson

2018 ◽  
Vol 23 (8) ◽  
pp. 1699-1710 ◽  
Author(s):  
Carine Thalman ◽  
Guilherme Horta ◽  
Lianyong Qiao ◽  
Heiko Endle ◽  
Irmgard Tegeder ◽  
...  

Summary Lysophosphatidic acid (LPA) is a synaptic phospholipid, which regulates cortical excitation/inhibition (E/I) balance and controls sensory information processing in mice and man. Altered synaptic LPA signaling was shown to be associated with psychiatric disorders. Here, we show that the LPA-synthesizing enzyme autotaxin (ATX) is expressed in the astrocytic compartment of excitatory synapses and modulates glutamatergic transmission. In astrocytes, ATX is sorted toward fine astrocytic processes and transported to excitatory but not inhibitory synapses. This ATX sorting, as well as the enzymatic activity of astrocyte-derived ATX are dynamically regulated by neuronal activity via astrocytic glutamate receptors. Pharmacological and genetic ATX inhibition both rescued schizophrenia-related hyperexcitability syndromes caused by altered bioactive lipid signaling in two genetic mouse models for psychiatric disorders. Interestingly, ATX inhibition did not affect naive animals. However, as our data suggested that pharmacological ATX inhibition is a general method to reverse cortical excitability, we applied ATX inhibition in a ketamine model of schizophrenia and rescued thereby the electrophysiological and behavioral schizophrenia-like phenotype. Our data show that astrocytic ATX is a novel modulator of glutamatergic transmission and that targeting ATX might be a versatile strategy for a novel drug therapy to treat cortical hyperexcitability in psychiatric disorders.


2020 ◽  
Vol 123 (2) ◽  
pp. 522-528
Author(s):  
Alexandra F. Yacyshyn ◽  
Samantha Kuzyk ◽  
Jennifer M. Jakobi ◽  
Chris J. McNeil

Elbow flexor force steadiness is less with the forearm pronated (PRO) compared with neutral (NEU) or supinated (SUP) and may relate to neural excitability. Although not tested in a force steadiness paradigm, lower spinal and cortical excitability was observed separately for biceps brachii in PRO, possibly dependent on contractile status at the time of assessment. This study aimed to investigate position-dependent changes in force steadiness as well as spinal and cortical excitability at a variety of contraction intensities. Thirteen males (26 ± 7 yr; means ± SD) performed three blocks (PRO, NEU, and SUP) of 24 brief (~6 s) isometric elbow flexor contractions (5, 10, 25 or 50% of maximal force). During each contraction, transcranial magnetic stimulation or transmastoid stimulation was delivered to elicit a motor-evoked potential (MEP) or cervicomedullary motor-evoked potential (CMEP), respectively. Force steadiness was lower in PRO compared with NEU and SUP ( P ≤ 0.001), with no difference between NEU and SUP. Similarly, spinal excitability (CMEP/maximal M wave) was lower in PRO than NEU (25 and 50% maximal force; P ≤ 0.010) and SUP (all force levels; P ≤ 0.004), with no difference between NEU and SUP. Cortical excitability (MEP/CMEP) did not change with forearm position ( P = 0.055); however, a priori post hoc testing for position showed excitability was 39.8 ± 38.3% lower for PRO than NEU at 25% maximal force ( P = 0.006). The data suggest that contraction intensity influences the effect of forearm position on neural excitability and that reduced spinal and, to a lesser extent, cortical excitability could contribute to lower force steadiness in PRO compared with NEU and SUP. NEW & NOTEWORTHY To address conflicting reports about the effect of forearm position on spinal and cortical excitability of the elbow flexors, we examine the influence of contraction intensity. For the first time, excitability data are considered in a force steadiness context. Motoneuronal excitability is lowest in pronation and this disparity increases with contraction intensity. Cortical excitability exhibits a similar pattern from 5 to 25% of maximal force. Lower corticospinal excitability likely contributes to relatively poor force steadiness in pronation.


Sign in / Sign up

Export Citation Format

Share Document