natural remanent magnetisation
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Author(s):  
William McCarthy ◽  
Vincent Twomey ◽  
Craig Magee ◽  
Mike Petronis

<p>Volcano eruption forecasting typically links ground deformation patterns to sub-surface magma movement. Injection and inflation of magmatic intrusions in the shallow crust is commonly accommodated by roof uplift, producing intrusion-induced forced folds that mimic the geometry of underlying igneous bodies. Whilst such forced folds have previously been described from field exposures, seismic reflection images, and modelled in scaled laboratory experiments, the dynamic interaction between progressive emplacement of hot magma, roof uplift, and any associated fracture/fault development remains poorly understood. For instance, analysis of ancient examples where magmatism has long-since ceased only provides information on final geometrical relationships, while, studies of active intrusions and forced folding only capture brief phases of the dynamic evolution of these structures. If we could unravel the spatial and temporal evolution of ancient forced folds, we could therefore acquire critical insights into magma emplacement processes and interpretation of ground deformation data at active volcanoes.</p><p> </p><p>We put forth and aim to test a new hypothesis suggesting that thermoremanent magnetization (TRM) records progressive deflection of the host rock during incremental laccolith construction and that these measurements can be used to measure the rate of laccolith construction. Here, we integrate palaeomagnetic techniques with semi-automated, UAV-based photogrammetric structural mapping to test: (1) whether we can identify variations in Natural Remanent Magnetisation (NRM), TRM, and magnetic mineralogy across an intrusions structural aureole; and (2) whether measured magnetic variations can be related to deflection caused by incremental sheet emplacement. Our test site is located within the basaltic lava pile of the ~800 m wide structural aureole of the rhyolitic Sandfell Laccolith in SE Iceland, which intruded <1 Km below the palaeosurface at ~11.7 Ma. We discuss whether palaeomagnetic backstripping can be an effective resource to constrain the rate and magnitude of intrusion-induced forced fold evolution, and thus an effective tool in volcanic hazard assessment.</p>


2020 ◽  
Vol 116 (1/2) ◽  
Author(s):  
Hugo G. Nami ◽  
Carlos A. Vasquez ◽  
Lyn Wadley ◽  
Paloma de la Peña

Palaeomagnetic data from a sedimentary section spanning the Holocene and terminal Pleistocene (~13 kya) from Rose Cottage Cave, eastern Free State (South Africa), are reported. The palaeomagnetic analysis took into account rock magnetism and directional analysis. The former reveals that most samples show stable single domain and superparamagnetic particles of Ti-poor magnetite and haematite. Natural remanent magnetisation directions were determined by progressive alternating field demagnetisation methodology. Directional analysis shows normal directions between samples 18 to 39 and 85 to 92; however, during the Early and Late Holocene in samples principally from RC40 to 84 ‘anomalous’ directions occurred. There is a significant westward shift in declination of ~80°, and a conspicuous fluctuating inclination in the lower part of the section during the Early Holocene at ≥9.5 kya and before ~12.0/13.0 kya. This palaeomagnetic record might become a chronostratigraphical marker for latest Pleistocene/Holocene sedimentary deposits in South Africa. Our two new accelerator mass spectrometry radiocarbon dates for the sampled deposit are 9500±50 BP and 1115±30 BP.


2012 ◽  
Vol 31 (1) ◽  
pp. 111-145 ◽  
Author(s):  
Kenneth Creer ◽  
Edward Irving

We describe the discovery that the natural remanent magnetisation (NRM) of certain rock formations in Britain that are Eocene or older have directions that differed significantly from the Earth's present field and from one another. In 1954 the first author, a third year research student in the Department or Geodesy and Geophysics (DG&G) at Cambridge University, observed that the poles corresponding to these old geomagnetic field directions fell consecutively on a path beginning in the Proterozoic in Arizona, swooped across the Pacific Ocean to the coast of eastern Asia and from there northwards to the present north geographic pole by the middle Tertiary. This was the first path of apparent polar wander (APW) based on the NRM of rocks. This path ought to have been reproducible in all continents had they not moved. Thus was born the first successful physical test of Wegener's Theory of continental drift. The work had its origins several years earlier with the construction in the later 1940s of a very sensitive magnetometer by P. M. S. Blackett at Jodrell Bank, a field station of the University of Manchester. In the summer and autumn of 1951, the second author, a recent geology graduate from Cambridge University, showed that Blackett's instrument, which had been made for an entirely different purpose, was well suited to measuring the NRM of rocks (palaeomagnetism). In the following years Blackett-type magnetometers became the means by which the British path of APW was observed. Although Creer's path was based only on nine poles we show that subsequent work fully justifies its use as a starting point for the successful global test of Wegener's theory that was carried out in the following years. Since then, palaeomagnetic poles and the APW paths derived from them have become the basis for constructing the general frame of reference for palaeogeographic maps, for mapping the past distribution of continents, oceans and orogenic belts, the location of ancient climatic zones and many other applications.


2004 ◽  
Vol 83 (3) ◽  
pp. 209-225 ◽  
Author(s):  
D. Lagrou ◽  
N. Vandenberghe ◽  
S. Van Simaeys ◽  
J. Hus

AbstractThis paper presents the results of a detailed rock magnetic and magnetostratigraphic study of the Lower Oligocene Rupelian unit-stratotype. Notwithstanding the relatively low intensity of the natural remanent magnetisation and the diverse and often unstable behaviour during demagnetisation, close-spaced sampling and accurate polarity determinations allowed us to determine the magnetic polarity zonation. The recognition of the characteristic magnetic polarity and the correlation with the standard magnetobiochronologic time scale yields an accurate chronostratigraphic dating of the Boom Clay Formation. The boundary between the geomagnetic chrons C12n and C12r nearly coincides with the lithostratigraphic boundary between theTerhagen and Putte Members. Rock magnetic techniques point to magnetite and probably also iron sulphides as the main magnetic remanence carriers. These magnetic minerals could, however, not be identified with classical mineralogical techniques performed on magnetic extractions. The failure to detect them may be due to the low concentration of these minerals, the small grain size, and the close physical relation with pyrite.


2004 ◽  
Vol 83 (3) ◽  
pp. 209-225 ◽  
Author(s):  
D. Lagrou ◽  
N. Vandenberghe ◽  
S. Van Simaeys ◽  
J. Van Hus

AbstractThis paper presents the results of a detailed rock magnetic and magnetostratigraphic study of the Lower Oligocene Rupelian unit-stratotype. Notwithstanding the relatively low intensity of the natural remanent magnetisation and the diverse and often unstable behaviour during demagnetisation, close-spaced sampling and accurate polarity determinations allowed us to determine the magnetic polarity zonation. The recognition of the characteristic magnetic polarity and the correlation with the standard magnetobiochronologic time scale yields an accurate chronostratigraphic dating of the Boom Clay Formation. The boundary between the geomagnetic chrons C12n and C12r nearly coincides with the lithostratigraphic boundary between the Terhagen and Putte Members. Rock magnetic techniques point to magnetite and probably also iron sulphides as the main magnetic remanence carriers. These magnetic minerals could, however, not be identified with classical mineralogical techniques performed on magnetic extractions. The failure to detect them may be due to the low concentration of these minerals, the small grain size, and the close physical relation with pyrite.


Sign in / Sign up

Export Citation Format

Share Document