scholarly journals Magnetostratigraphy and rock magnetism of the Boom Clay (Rupelian stratotype) in Belgium

2004 ◽  
Vol 83 (3) ◽  
pp. 209-225 ◽  
Author(s):  
D. Lagrou ◽  
N. Vandenberghe ◽  
S. Van Simaeys ◽  
J. Hus

AbstractThis paper presents the results of a detailed rock magnetic and magnetostratigraphic study of the Lower Oligocene Rupelian unit-stratotype. Notwithstanding the relatively low intensity of the natural remanent magnetisation and the diverse and often unstable behaviour during demagnetisation, close-spaced sampling and accurate polarity determinations allowed us to determine the magnetic polarity zonation. The recognition of the characteristic magnetic polarity and the correlation with the standard magnetobiochronologic time scale yields an accurate chronostratigraphic dating of the Boom Clay Formation. The boundary between the geomagnetic chrons C12n and C12r nearly coincides with the lithostratigraphic boundary between theTerhagen and Putte Members. Rock magnetic techniques point to magnetite and probably also iron sulphides as the main magnetic remanence carriers. These magnetic minerals could, however, not be identified with classical mineralogical techniques performed on magnetic extractions. The failure to detect them may be due to the low concentration of these minerals, the small grain size, and the close physical relation with pyrite.

2004 ◽  
Vol 83 (3) ◽  
pp. 209-225 ◽  
Author(s):  
D. Lagrou ◽  
N. Vandenberghe ◽  
S. Van Simaeys ◽  
J. Van Hus

AbstractThis paper presents the results of a detailed rock magnetic and magnetostratigraphic study of the Lower Oligocene Rupelian unit-stratotype. Notwithstanding the relatively low intensity of the natural remanent magnetisation and the diverse and often unstable behaviour during demagnetisation, close-spaced sampling and accurate polarity determinations allowed us to determine the magnetic polarity zonation. The recognition of the characteristic magnetic polarity and the correlation with the standard magnetobiochronologic time scale yields an accurate chronostratigraphic dating of the Boom Clay Formation. The boundary between the geomagnetic chrons C12n and C12r nearly coincides with the lithostratigraphic boundary between the Terhagen and Putte Members. Rock magnetic techniques point to magnetite and probably also iron sulphides as the main magnetic remanence carriers. These magnetic minerals could, however, not be identified with classical mineralogical techniques performed on magnetic extractions. The failure to detect them may be due to the low concentration of these minerals, the small grain size, and the close physical relation with pyrite.


Geophysics ◽  
1969 ◽  
Vol 34 (5) ◽  
pp. 775-779 ◽  
Author(s):  
R. S. Carmichael

Study of the effect of mechanical deformation on magnetic minerals indicates the structure‐sensitive character of a parameter such as coercive force. Magnetoelastic effects and stress‐induced rearrangement of the magnetic domain pattern lead to changes in magnetic remanence. Such work has relevance to basic studies in rock magnetism and paleomagnetism. The effect of increase in hydrostatic pressure on rocks with depth may have application in geophysical prospecting. For example, it could be a factor in the interpretation of magnetic well logging for remanence (Frey, 1951; Khramov, 1957) and susceptibility (Broding et al, 1952; Anderson, 1968), or interpretation of magnetic anomalies from deep‐seated sources.


Géotechnique ◽  
2007 ◽  
Vol 57 (2) ◽  
pp. 229-237 ◽  
Author(s):  
F. Bernier ◽  
X. L. Li ◽  
W. Bastiaens
Keyword(s):  

2021 ◽  
Author(s):  
Francho Gracia Puzo ◽  
Charles Aubourg ◽  
Antonio Casas Sainz

<p>With the objective of mapping strain on the footwall of a thrust in an orogenic context (Leyre thrust, South Pyrenean Range), more than 1500 unoriented shale fragments (0.7-6.2 g) have been collected. Scalar data (degree of anisotropy P and shape parameter T), together with ellipse of confidence of individual axes provide a proxy of strain acquired by shales in the footwall of the main thrust (Saur et al. 2020).</p><p>Normally, sampling is done by two methods: collecting oriented decimetric hand specimens; or drilling 2.5 cm diameter cylinders. This presents the advantage to deal with oriented samples. However, those techniques are time consuming and it is difficult to collect numerous samples in loose materials such as shales. On the contrary, collecting rock fragments presents the net advantage to provide a much better statistical characterization of the site.</p><p>All samples belong to the Eocene shaly formations from the Jaca Basin. Rock fragments are mostly fractured according to the bedding and/or cleavage surfaces. We demonstrate that the anisotropy parameters P and T maintain their values, regardless the shape and size of fragments. Rock magnetism indicates that AMS is primarily governed by illite, with little contribution of magnetite. AMS provides therefore a proxy of illite organisation within the matrix.</p><p>In the footwall of the Sierra de Leyre we have defined up to 7 parallel sampling sections, whose traces are perpendicular to the direction of the main thrust. On average, each section is made up of about 10 sampling sites and about 15 fragments are collected per site, covering a few square meters.</p><p>We are restricted by the dimensions of AGICO holders (8cm<sup>3</sup> for cubes, or 10 cm<sup>3</sup> for cylinders). It is possible to use an empty 10 cm<sup>3</sup> cylinder, which can be filled with smaller fragments of rock. The automatic rotator allows a fast and precise description of the AMS tensor. We removed from analysis low susceptibility, carbonate-rich samples, that show a higher variety of magnetic minerals. All sites present homogenous results at the site scale, but with significant differences with respect to strain. P and T parameters are very sensitive to strain as illite is the dominant carrier. In addition, the ellipse of confidence of the minimum AMS axis (K3) provides a sensitive proxy to characterize the competition between bedding and cleavage.</p><p>The comparison between the different sections allows to map the areas of damage linked to the propagation of faults associated with the folds. 5 stages of development of the magnetic fabric allows the detection of damage gradients. The mapping has allowed the identification of hidden faults.    </p><p>This new approach is very promising, and allows much more detailed samplings in difficult areas, providing more robust statistical description of scalar AMS data. This methodology could be useful for the study of outcrops that are difficult to access, and more interestingly, from borehole cuttings.</p>


2008 ◽  
Vol 1107 ◽  
Author(s):  
Alice Ionescu ◽  
Norbert Maes ◽  
Dirk Mallants

AbstractIn Belgium, the Boom Clay formation is considered to be the reference formation for HLW disposal R&D. Assessments to date have shown that the host clay layer is a very efficient barrier for the containment of the disposed radionuclides. Due to absence of significant water movement), diffusion - the dominant transport mechanism, combined with generally high retardation of radionuclides, leads to extremely slow radionuclide migration. However, trivalent lanthanides and actinides form easily complexes with the fulvic and humic acids which occur in Boom Clay and in its interstitial water. Colloidal transport may possibly result in enhanced radionuclide mobility, therefore the mechanisms of colloidal transport must be better understood. Numerical modeling of colloidal facilitated radionuclide transport is regarded an important means for evaluating its importance for long-term safety.The paper presents results from modeling experimental data obtained in the framework of the EC TRANCOM-II project, and addresses the migration behavior of relevant radionuclides in a reducing clay environment, with special emphasis on the role of the Natural Organic Matter (NOM) [1]. Percolation type experiments, using stable 14C-labelled NOM, have been interpreted by means of the numerical code HYDRUS-1D [2]. Tracer solution collected at regular intervals was used for inverse modeling with the HYDRUS-1D numerical code to identify the most likely migration processes and the associated parameters. Typical colloid transport submodels tested included kinetically controlled attachment/detachment and kinetically controlled straining and liberation.


2016 ◽  
Vol 85 (2) ◽  
pp. 147-171 ◽  
Author(s):  
Frederik H. Mollen ◽  
Barry W.M. van Bakel ◽  
John W.M. Jagt

A detailed redescription of a chondrocranium from the basal Boom Clay Formation (Rupelian, Upper Oligocene) at the SVK clay pit, Sint-Niklaas (province of Oost-Vlaanderen, Belgium), previously assigned to the sawshark Pristiophorus rupeliensis, is presented. The chondrocranium is re-identified as that of an angel shark (Squatinidae), based on comparative anatomy of extant Squatina, inclusive of CT scans of Squatina africana, S. australis, S. dumeril, S. guggenheimand S. squatina, with different geographic distributions and representing all four angel shark clades as defined in a previous molecular study. Differential characters for chondrocrania listed in earlier accounts to discriminate angel shark species from the southwest Atlantic proved to be even more revealing when comparing angel sharks from different regions/clades. Despite this wide interspecific variation, the fossil chondrocranium compares well with modern Squatina, but differs in having a UUU-shaped ventral margin of the occipital region and rounded margins of the upper postorbital processes. The distal expansion of the upper postorbital processes present in modern species has not yet been observed in extinct squatinoids and might constitute a derived character for modern representatives only. Angel shark teeth and vertebrae are well known from the same basal deposit at the SVK clay pit, but Cenozoic squatinid taxonomy remains problematic. It is here discussed in detail for the Oligocene taxa S. angeloides, S. rupeliensisand S. beyrichi. For the time being, all SVK material is left in open nomenclature and referred to as Squatinasp.


2019 ◽  
Vol 966 ◽  
pp. 282-289 ◽  
Author(s):  
Susilawati ◽  
Aris Doyan ◽  
Muhammad Taufik ◽  
Wahyudi ◽  
Eryn Ryantin Gunawan ◽  
...  

The research was conducted to examine the content of Fe and other metal in natural sand of beach Ampenan, Mataram, Indonesia which is expected to be used as microwave absorbent material. Characterizations of the electrical and magnetic properties Barium M-Hexaferrite (BaM) with Zn-Mn doping (BaFe12-2xZnxMnxO19) are biosynthesized. Research carried out among others tested the metal content of Fe and other metals, synthesize BaFe12-2xZnxMnxO19. The samples were characterized using Vibrating Sample Magnetometer (VSM) and Network Vector Analyzer (VNA) for the test properties of electricity and magnetism, as well as the absorption of microwaves. The results from the AAS (Atomic Absorption Spectroscopy) testing showed that each gram of magnetic minerals in the natural sand containing 16.27 mg Fe, which states that the majority of metal components content is 69.80% Fe metal with the Magnetite and Hematite phases. The result from VSM showed that the coercivity value decreased when doping ion concentration and calcination temperature increased (0.16 Tesla at 600°C for x = 0.0 and 0.09 Tesla at 800°C for x = 1.0). Value of magnetic saturation and the magnetic remanence decreased with increasing ion concentration (Ms= 4.94 emu/g at x = 0.0 decreased to 0.31 emu/g at x = 1.0) and Mr = 3.43 emu/g for x = 0.0 decreased to 0.06 emu/g at x=1.0. These indicates that the sample has been soft magnetic. The result from VNA showed that the electrical conductivity values measured in the range 8.0-15.0 GHz indicate that the sample is a semiconductor (1.62×10-2 S/cm). The result from VNA showed that the microwave absorption properties increased at higher concentration of doping ions and the calcination temperature would increase the value of Reflection Loss (RL). Maximum RL value of the sample is -14.37 dB at 15 GHz and the absorption coefficient of 96.34%. These results indicate that the BaFe10.8Zn0.6Mn0.6O19 sample can be applied as a microwave absorbent material on X-band to Ku- band frequency. Keyword: Characterization, Barium M-Hexaferrite, doping, microwave, absorbent.


2020 ◽  
Author(s):  
Burak Semih Cabuk ◽  
Mualla Cengiz

<p>The Marmara region is located on the Alpine Himalayan orogenic belt which experienced a active tectonic deformation. The region consists of tectonic units such as the Istanbul Zone, the Strandja Zone and the Sakarya Continent. It is reported in the previous geological studies that the Istanbul Zone began to move southwards appart from the Moesia Platform with the effect of West Blacksea Fault in the west and West Crimea Fault in the east after the the opening of the Black Sea in the Cretaceous. It is known that the Intra Pontide suture is formed after the closure of the Intra-Pontide ocean during the Early Eocene due to the collision between İstanbulzone and the Sakarya continent which moved northwards. As a result of the continental collision, the region has completed its evolution under the influence of basin formation and the emplacement of North Anatolian Fault Zone from Miocene to the present.</p><p> </p><p>In this study, Upper Cretaceous-Oligocene sedimentary and volcanic rocks were sampled at 103 sites to investigate the tectonic deformation of the area. As a result of rock magnetism studies, it was shown that magnetic minerals in sedimentary and volcanic rocks are defined by titanium-rich titanomagnetite showing low coercivity, while in limestone samples, magnetization is defined by hematite showing high coercivity. As a result of anisotropy of magnetic susceptibility (AMS) measurements, it was observed that most of the samples show magnetic foliation and a deformation ellipsoid which is oblate. Paleomagnetic results show counterclockwise rotation of 19.9°±10.9° for the Sakarya continent, 27.4°±11.6°for the Pontides and 15.6°±11.8°for the Strandja Zone from Eocene to present. The results indicate that the region has completed the collision in Eocene and rotated counterclockwise as a large block. Deformation due to basin development or fault bounded block rotations which developed after Miocene could not been detected in this study. Miocene paleomagnetic data from previous studies in the study area are compatible with counterclockwise rotations in Upper Cretaceous-Oligocene which shows that different blocks emplaced in the study area moved together as a single plate during Eocene-Miocene time.</p>


2020 ◽  
Author(s):  
Belén Oliva-Urcia ◽  
Ana Moreno ◽  
Blas Valero-Garcés

<p>Paleoenvironmental reconstructions from three mountaineous lakes located in northern Iberia are compared and completed with classical magnetic analyses in order to detect the influence of different processes on the record and preservation of magnetic properties. The lakes are located in the Cantabrian Mountains, Enol Lake, and in the Pyrenees, the Marboré Lake and Basa de la Mora Lake and share a similar composition of their catchment areas, dominated by limestones. They present other different characteristics, such as in the organic matter content, being Enol the one with the highest organic carbon values. Redox indicator (Mn/Fe) is higher and more variable in Basa de la Mora Lake, whereas in Enol and Marboré Lakes steadily increases towards the top of the sequences. New and revisited results from sedimentary cores unravel the significance of the magnetic changes respect to the geochemical and sedimentological variations found in the geological record.</p><p>The magnetic mineralogy present after analyses done in discrete samples (less than 500 mg) is magnetite in all samples, due to a sharp decrease at 120 K (Verwey crystallographic transition) and 580ºC (Curie temperature of magnetite) in the thermomagnetic curves performed in the MPMS and the Curie balance respectively. No indication of neither pyrrhotite (phase transition at 35 K) nor siderite is observed. The high temperature thermomagnetic analyses show the presence and creation of magnetite during heating, see an increasing of induced magnetization forming a broad peak above 450ºC in the heating curve. In addition, a subtle change in the induced magnetization is observed at around 300ºC. All analyses related with coercivity indicate the predominance of low coercitive minerals (“soft”) as magnetite is.</p><p>The combination of geochemical, sedimentological and magnetic proxies suggest that in Enol Lake the magnetic signal may be dominated by the formation of new minerals in relation to redox processes favored by the higher presence of organic matter (6%organic content), whereas in Marboré Lake, the increase of the magnetic signal toward the top of the sequence seems related to the oxic environment and the preservation of magnetite, since this lake is ultra-oligotrophic. In Basa de la Mora Lake, the source rock seems to play a role in the magnetic signal of the sequence.</p><p>These results indicate that diagenesis and changes in the redox conditions alter the concentration of magnetic minerals during the Late Pleistocene and Holocene and underlines their value as environmental and paleoclimate archives.</p><p><strong>Acknowledgements</strong></p><p>Funding for this research was provided by the Spanish Inter-Ministry Commission of Science and Technology through MEDLANT (CGL2016-76215-R) and DINAMO 3 (Ref CGL2015-69160-R) projects and by the European Commission (EFA056/15 REPLIM). The Institute for Rock Magnetism (IRM), the Instrumentation and Facilities program of the National Science Foundation of the Earth Science Division and the University of Minnesota are acknowledged for supporting visits and the free use of the facilities at the IRM, together with the both easy-going and expert guidance from the IRM staff.</p>


Sign in / Sign up

Export Citation Format

Share Document