nutrient assimilation
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 3)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 221
Author(s):  
Paraskevi Psachoulia ◽  
Sofia-Natalia Schortsianiti ◽  
Urania Lortou ◽  
Spyros Gkelis ◽  
Christos Chatzidoukas ◽  
...  

Four microalgae species were evaluated for their bioremediation capacity of anaerobic digestion effluent (ADE) rich in ammonium nitrogen, derived from a biogas plant. Chlorella vulgaris, Chlorella sorokiniana, Desmodesmus communis and Stichococcus sp. were examined for their nutrient assimilation efficiency, biomass production and composition through their cultivation in 3.7% v/v ADE; their performance was compared with standard cultivation media which consisted in different nitrogen sources, i.e., BG-11NO3 and BG-11ΝΗ4 where N-NO3 was replaced by N-NH4. The results justified ammonium as the most preferable source of nitrogen for microalgae growth. Although Stichococcus sp. outperformed the other 3 species in N-NH4 removal efficiency both in BG-11NH4 and in 3.7% ADE (reaching up to 90.79% and 69.69% respectively), it exhibited a moderate biomass production when it was cultivated in diluted ADE corresponding to 0.59 g/L, compared to 0.89 g/L recorded by C. vulgaris and 0.7 g/L by C. sorokiniana and D. communis. Phosphorus contained in the effluent and in the control media was successfully consumed by all of the species, although its removal rate was found to be affected by the type of nitrogen source used and the particular microalgae species. The use of ADE as cultivation medium resulted in a significant increase in carbohydrates content in all investigated species.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2133
Author(s):  
Weifang Wu ◽  
Haoshun Zhao ◽  
Qin Deng ◽  
Haiyang Yang ◽  
Xiaoxiao Guan ◽  
...  

Watermelon (Citrullus lanatus) is a globally important Cucurbitaceae crop in which grafting is commonly used to improve stress tolerance and enhance nutrient utilization. However, the mechanism underlying grafting-enhanced nutrient assimilation remains unclear. Here, we demonstrate the possible involvement of a novel Cucurbitaceae miRNA, ClmiR86, in grafting-enhanced phosphate-starvation tolerance via CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE 5 (ClCIPK5) suppression in watermelon. Transcript analyses revealed that the induction of ClmiR86 expression was correlated with the downregulation of ClCIPK5 in squash-grafted watermelon under phosphate starvation. In addition, the differential expression of ClmiR86 in various watermelon genotypes was consistent with their phosphate utilization efficiency. Furthermore, ClmiR86 overexpression in Arabidopsis enhanced root growth and phosphate uptake under phosphate starvation and promoted inflorescence elongation under normal conditions. These results suggest that the ClmiR86–ClCIPK5 axis is involved in phosphate starvation response as well as grafting-enhanced growth vigor and phosphate assimilation. The present study provides valuable insights for investigating long-distance signaling and nutrient utilization in plants.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3163
Author(s):  
Wassim Gana ◽  
Arnaud De Luca ◽  
Camille Debacq ◽  
Fanny Poitau ◽  
Pierre Poupin ◽  
...  

Vitamin deficiencies have a serious impact on healthy aging in older people. Many age-related disorders have a direct or indirect impact on nutrition, both in terms of nutrient assimilation and food access, which may result in vitamin deficiencies and may lead to or worsen disabilities. Frailty is characterized by reduced functional abilities, with a key role of malnutrition in its pathogenesis. Aging is associated with various changes in body composition that lead to sarcopenia. Frailty, aging, and sarcopenia all favor malnutrition, and poor nutritional status is a major cause of geriatric morbidity and mortality. In the present narrative review, we focused on vitamins with a significant risk of deficiency in high-income countries: D, C, and B (B6/B9/B12). We also focused on vitamin E as the main lipophilic antioxidant, synergistic to vitamin C. We first discuss the role and needs of these vitamins, the prevalence of deficiencies, and their causes and consequences. We then look at how these vitamins are involved in the biological pathways associated with sarcopenia and frailty. Lastly, we discuss the critical early diagnosis and management of these deficiencies and summarize potential ways of screening malnutrition. A focused nutritional approach might improve the diagnosis of nutritional deficiencies and the initiation of appropriate clinical interventions for reducing the risk of frailty. Further comprehensive research programs on nutritional interventions are needed, with a view to lowering deficiencies in older people and thus decreasing the risk of frailty and sarcopenia.


2021 ◽  
Author(s):  
Magdalena Krauze

Genetic advance aimed at accelerating the growth rate of slaughter birds have reduced the natural resistance of poultry to infections. It also increased susceptibility to stress, which resulted in deterioration of the welfare and productivity of poultry. Additionally, intensive poultry production poses a risk of exposure of chickens to unfavorable zoo-hygienic conditions and contamination with pathogens from the external environment (bedding, water, feed, hen house staff, sick birds in the flock). Due to the potential production losses, measures are taken to improve the health and effectiveness of bird rearing, for example by using growth stimulants and improving the composition of the gastrointestinal microbiome and improving metabolism and the work of the immune system. The addition of phytobiotics to feed or drinking water supports digestion and metabolism in the body, stimulates the growth and development of a useful microbiome, limits the multiplication and adhesion of pathogens, and improves the structure and functioning of enterocytes. The aim of this study is to present the health benefits resulting from the use of phytobiotics in poultry production, as well as to make people aware of the dangers of incompetent incorporation of herbs into feed mixtures or into drinking water. Due to the fact that not all species of animals react equally to a given plant, the selection of plant materials should be carefully considered and matched to the expected benefits. By using phytobiotics you can improve growth and performance of broiler chickens, through greatly improve digestion and nutrient assimilation. Plant additives can improve health through stimulate immunity and increase resistance to stress. Using of phitobiotics improve the quality of meat and eggs, increase the weight of valuable parts of carcass (pectoral and leg muscles) and stimulate laying. Unfortunately, due to the potentially toxic effect of an excess of certain herbs on the work of the liver, and the adverse changes in the palatability of eggs, use caution in the use some herbs e.g. of garlic, turmeric, rapeseed, alfa alfa, shiny privet or moringa.


2021 ◽  
Author(s):  
Soibam Helena Devi ◽  
Ingudam Bhupenchandra ◽  
Soibam Sinyorita ◽  
S.K. Chongtham ◽  
E. Lamalakshmi Devi

The 20thcentury witnessed an augmentation in agricultural production, mainly through the progress and use of pesticides, fertilizers containing nitrogen and phosphorus, and developments in plant breeding and genetic skills. In the naturally existing ecology, rhizospheric soils have innumerable biological living beings to favor the plant development, nutrient assimilation, stress tolerance, disease deterrence, carbon seizing and others. These organisms include mycorrhizal fungi, bacteria, actinomycetes, etc. which solubilize nutrients and assist the plants in up taking by roots. Amongst them, arbuscular mycorrhizal (AM) fungi have key importance in natural ecosystem, but high rate of chemical fertilizer in agricultural fields is diminishing its importance. The majority of the terrestrial plants form association with Vesicular Arbuscular Mycorrhiza (VAM) or Arbuscular Mycorrhizal fungi (AMF). This symbiosis confers benefits directly to the host plant’s growth and development through the acquisition of Phosphorus (P) and other mineral nutrients from the soil by the AMF. They may also enhance the protection of plants against pathogens and increases the plant diversity. This is achieved by the growth of AMF mycelium within the host root (intra radical) and out into the soil (extra radical) beyond. Proper management of Arbuscular Mycorrhizal fungi has the potential to improve the profitability and sustainability of agricultural systems. AM fungi are especially important for sustainable farming systems because AM fungi are efficient when nutrient availability is low and when nutrients are bound to organic matter and soil particles.


2021 ◽  
pp. 1-15
Author(s):  
Salah Eddine Azaroual ◽  
Najib El Mernissi ◽  
Youssef Zeroual ◽  
Brahim Bouizgarne ◽  
Issam Meftah Kadmiri

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4579
Author(s):  
Valentina Dell’Oste ◽  
Francesca Spyrakis ◽  
Cristina Prandi

Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1366
Author(s):  
Éamonn Walsh ◽  
Neil E. Coughlan ◽  
Seán O’Brien ◽  
Marcel A. K. Jansen ◽  
Holger Kuehnhold

As part of a circular economy (CE) approach to food production systems, Lemnaceae, i.e., duckweed species, can be used to remediate wastewater due to rapid nutrient assimilation and tolerance of non-optimal growing conditions. Further, given rapid growth rates and high protein content, duckweed species are a valuable biomass. An important consideration for duckweed-mediated remediation is the density at which the plants grow on the surface of the wastewater, i.e., how much of the surface of the medium they cover. Higher duckweed density is known to have a negative effect on duckweed growth, which has implications for the development of duckweed-based remediation systems. In the present study, the effects of density (10–80% plant surface coverage) on Lemna minor growth, chlorophyll fluorescence and nutrient remediation of synthetic dairy processing wastewater were assessed in stationary (100 mL) and re-circulating non-axenic (11.7 L) remediation systems. Overall, L. minor growth, and TN and TP removal rates decreased as density increased. However, in the stationary system, absolute TN and TP removal were greater at higher densities (50–80% coverage). The exact cause of density related growth reduction in duckweed is unclear, especially at densities well below 100% surface coverage. A further experiment comparing duckweed grown at ‘low’ and ‘high’ density conditions with the same biomass and media volume conditions, showed that photosynthetic yield, Y(II), is reduced at high density despite the same nutrient availability at both densities, and arguably similar shading. The results demonstrate a negative effect of high density on duckweed growth and nutrient uptake, and point towards signals from neighbouring duckweed colonies as the possible cause.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1303
Author(s):  
Badar Jahan ◽  
Noushina Iqbal ◽  
Mehar Fatma ◽  
Zebus Sehar ◽  
Asim Masood ◽  
...  

In the present study, the potential of ethylene as ethephon (an ethylene source) was investigated individually and in combination with split doses of nitrogen (N) and sulfur (S) soil treatments for removal of the damaging effects of salt stress (100 mM NaCl) in mustard (Brassica juncea L.). Plants were grown with 50 mg N plus 50 mg S kg−1 soil at sowing time and an equivalent dose at 20 days after sowing [N50 + S50]0d and 20d. Ethephon at 200 μL L‒1 was applied to combined split doses of N and S with or without NaCl. Plants subjected to NaCl showed a decrease in growth and photosynthetic characteristics as well as N and S assimilation, whereas proline metabolism and antioxidants increased. The application of ethephon to plants grown with split N and S doses significantly enhanced photosynthetic efficiency by increasing the assimilation of N and S, improving the concentration of proline and induction of the antioxidant system with or without NaCl. The regulation of ethylene and/or split forms of N and S application may be potential tools for not just overcoming salt stress effects in this species and in related Brassicaceae but also enhancing their photosynthesis and growth potential through increased nutrient assimilation.


Sign in / Sign up

Export Citation Format

Share Document