scholarly journals The Novel Cucurbitaceae miRNA ClmiR86 Is Involved in Grafting-Enhanced Phosphate Utilization and Phosphate Starvation Tolerance in Watermelon

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2133
Author(s):  
Weifang Wu ◽  
Haoshun Zhao ◽  
Qin Deng ◽  
Haiyang Yang ◽  
Xiaoxiao Guan ◽  
...  

Watermelon (Citrullus lanatus) is a globally important Cucurbitaceae crop in which grafting is commonly used to improve stress tolerance and enhance nutrient utilization. However, the mechanism underlying grafting-enhanced nutrient assimilation remains unclear. Here, we demonstrate the possible involvement of a novel Cucurbitaceae miRNA, ClmiR86, in grafting-enhanced phosphate-starvation tolerance via CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE 5 (ClCIPK5) suppression in watermelon. Transcript analyses revealed that the induction of ClmiR86 expression was correlated with the downregulation of ClCIPK5 in squash-grafted watermelon under phosphate starvation. In addition, the differential expression of ClmiR86 in various watermelon genotypes was consistent with their phosphate utilization efficiency. Furthermore, ClmiR86 overexpression in Arabidopsis enhanced root growth and phosphate uptake under phosphate starvation and promoted inflorescence elongation under normal conditions. These results suggest that the ClmiR86–ClCIPK5 axis is involved in phosphate starvation response as well as grafting-enhanced growth vigor and phosphate assimilation. The present study provides valuable insights for investigating long-distance signaling and nutrient utilization in plants.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rokhsareh Rozbeh ◽  
Karl Forchhammer

AbstractPII proteins constitute a widespread signal transduction superfamily in the prokaryotic world. The canonical PII signal proteins sense metabolic state of the cells by binding the metabolite molecules ATP, ADP and 2-oxoglutarate. Depending on bound effector molecule, PII proteins interact with and modulate the activity of multiple target proteins. To investigate the complexity of interactions of PII with target proteins, analytical methods that do not disrupt the native cellular context are required. To this purpose, split luciferase proteins have been used to develop a novel complementation reporter called NanoLuc Binary Technology (NanoBiT). The luciferase NanoLuc is divided in two subunits: a 18 kDa polypeptide termed “Large BiT” and a 1.3 kDa peptide termed “Small BiT”, which only weakly associate. When fused to proteins of interest, they reconstitute an active luciferase when the proteins of interest interact. Therefore, we set out to develop a new NanoBiT sensor based on the interaction of PII protein from Synechocystis sp. PCC6803 with PII-interacting protein X (PipX) and N-acetyl-L-glutamate kinase (NAGK). The novel NanoBiT sensor showed unprecedented sensitivity, which made it possible to detect even weak and transient interactions between PII variants and their interacting partners, thereby shedding new light in PII signalling processes.


2017 ◽  
Vol 28 (26) ◽  
pp. 3857-3869 ◽  
Author(s):  
Kyoko Chiba ◽  
Ko-yi Chien ◽  
Yuriko Sobu ◽  
Saori Hata ◽  
Shun Kato ◽  
...  

In neurons, amyloid β-protein precursor (APP) is transported by binding to kinesin-1, mediated by JNK-interacting protein 1b (JIP1b), which generates the enhanced fast velocity (EFV) and efficient high frequency (EHF) of APP anterograde transport. Previously, we showed that EFV requires conventional interaction between the JIP1b C-terminal region and the kinesin light chain 1 (KLC1) tetratricopeptide repeat, whereas EHF requires a novel interaction between the central region of JIP1b and the coiled-coil domain of KLC1. We found that phosphorylatable Thr466 of KLC1 regulates the conventional interaction with JIP1b. Substitution of Glu for Thr466 abolished this interaction and EFV, but did not impair the novel interaction responsible for EHF. Phosphorylation of KLC1 at Thr466 increased in aged brains, and JIP1 binding to kinesin-1 decreased, suggesting that APP transport is impaired by aging. We conclude that phosphorylation of KLC1 at Thr466 regulates the velocity of transport of APP by kinesin-1 by modulating its interaction with JIP1b.


2014 ◽  
Vol 281 (1795) ◽  
pp. 20140878 ◽  
Author(s):  
Kathryn McMahon ◽  
Kor-jent van Dijk ◽  
Leonardo Ruiz-Montoya ◽  
Gary A. Kendrick ◽  
Siegfried L. Krauss ◽  
...  

A movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones. A capacity for long-distance dispersal and demographic connectivity over multiple timeframes is the novel feature of the movement ecology of seagrasses with significant evolutionary and ecological consequences. The space–time movement footprint of different life-history stages varies. For example, the distance moved by reproductive propagules and vegetative expansion via clonal growth is similar, but the timescales range exponentially, from hours to months or centuries to millennia, respectively. Consequently, environmental factors and key traits that interact to influence movement also operate on vastly different spatial and temporal scales. Six key future research areas have been identified.


2021 ◽  
Author(s):  
Haijing Hu ◽  
Rumeng Ye ◽  
Lu Pang ◽  
Han Jiang ◽  
Kai Tian ◽  
...  

Abstract Background and aims: Endophytic microorganisms exist commonly in plants and are recognized to increase plant growth especially under adverse physical environmental conditions. We here demonstrate that endophytic bacteria (EB) Bacillus cereus can accelerate the decomposition of plant litter and enhance nutrient availability for plant growth.Methods: We first obtained plant litter with and without EB inoculation using a model plant Arabidopsis thaliana in a microcosmic experiment, then conducted a litter decomposition experiment to investigated the effect of EB on litter decay rate, phosphorus availability, and on soil microbial community structure. We further evaluated wheat (Triticum aestivum) biomass growth using soils treated with and without EB.Results: Inoculation of EB significantly increased the mass loss of Arabidopsis litter in the middle stage of decomposition, elevated the activity of alkaline phosphatase in the early stage of decomposition, and increased soil available P at the end of decomposition. Analyses of Illumina MiSeq sequencing and structural equation models also indicated that EB inoculation had pronounced impact on the bacterial abundance and diversity in soil. Finally, the growth of the wheat was significantly promoted in the litter with EB decomposition system. Conclusion: EB mediated host after-life effect likely through accelerating the release of nutrients such as P from decomposing plant litter and regulating the structure of soil microorganisms, promoting the sustainability of nutrient utilization efficiency in a terrestrial ecosystem.


2018 ◽  
Vol 20 (5) ◽  
pp. 1782-1793 ◽  
Author(s):  
Qian Wang ◽  
Yoon-Suk Kang ◽  
Abdullah Alowaifeer ◽  
Kaixiang Shi ◽  
Xia Fan ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1742
Author(s):  
Ahmad Reza Seradj ◽  
Joaquim Balcells ◽  
Laura Sarri ◽  
Lorenzo José Fraile ◽  
Gabriel de la Fuente Oliver

In order to reduce dietary nitrogen and achieve an efficient protein deposition as well as decrease N wastage, we challenged the nutrient utilization efficiency of two different producing types in front of a dietary crude protein (CP) restriction and studied the role of the microbiota in such an adaptation process. Therefore, 32 pure castrated male Duroc (DU) and 32 entire male hybrid (F2) piglets were raised in a three-phase feeding regime. At each phase, two iso caloric diets differing in CP content, also known as normal protein (NP) and low protein (LP), were fed to the animals. LP diets had a fixed restriction (2%) in CP content in regards to NP ones throughout the phases of the experiment. At the end of third phase, fecal samples were collected for microbiota analysis purposes and greenhouse gases emissions, together with ammonia, were tested. No changes were found in average daily feed intake (ADFI) of animals of two producing types (Duroc vs. F2) or those consumed different experimental diets (NP vs. LP) throughout the course of study. However, at the end of each experimental phase the average body weight (BW) of hybrid animals were higher compared to Duroc pigs, whereas a reverse trend was observed for average daily gain (ADG), where Duroc pigs showed greater values with respect to hybrid ones. Despite, greater CH4 and ammonia emissions in Duroc pigs with respect to F2, no significant differences were found in contaminant gases emissions between diets. Moreover, LP diets did not alter the microbial community structure, in terms of diversity, although some genera were affected by the dietary challenge. Results suggest that the impact of reducing 2% of CP content was limited for reduction in contaminant gases emissions and highlight the hypothesis that moderate change in the dietary protein levels can be overcome by long-term adaptation of the gut microbiota. Overall, the influence of the producing type on performance and digestive microbiota composition was more pronounced than the dietary effect. However, both producing types responded differently to CP restriction. The use of fecal microbiota as biomarker for predicting feed efficiency has a great potential that should be completed with robust predictive models to achieve consistent and valid results.


PROTEOMICS ◽  
2006 ◽  
Vol 6 (5) ◽  
pp. 1495-1511 ◽  
Author(s):  
Wanda Maria Almeida von Krüger ◽  
Leticia Miranda Santos Lery ◽  
Marcia Regina Soares ◽  
Fernanda Saloum de Neves-Manta ◽  
Celia Maria Batista e Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document