star ages
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 162 (6) ◽  
pp. 242
Author(s):  
L. Brefka ◽  
J. C. Becker

Abstract Ultra-short-period (USP) planets are exoplanets that have orbital periods of less than one day and are unique because they orbit inside the nominal magnetic truncation gap of their host stars. In some cases, USP planets have also been observed to exhibit unique dynamical parameters such as significant misalignments in inclination angle with respect to nearby planets. In this paper, we explore how the geometry of a multiplanet system hosting a USP planet can be expected to evolve as a star ages. In particular, we explore the relationship between the mutual inclination of the USP planet and the quadrupole moment (J 2) of the host star. We use secular perturbation theory to predict the past evolution of the example TOI-125 system, and then confirm the validity of our results using long-term N-body simulations. Through investigating how the misalignment between the candidate USP planet and the three other short-period planets in the TOI-125 system arose, we intend to derive a better understanding of the population of systems with misaligned USP planets and how their observed parameters can be explained in the context of their dynamical histories.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1519
Author(s):  
Robert E. Criss ◽  
Anne M. Hofmeister

Empirical laws proposed for the decline in star spin with time have heretofore been tested using ambiguous fitting models. We develop an analytical inverse model that uses histogram data to unequivocally determine the physical law governing how dwarf star spin depends on time (t) and mass (M). We analyze shapes of paired histograms of axial rotation period (П) and angular velocity (ω = 2π/П) to utilize the fact that a variable and its reciprocal are governed by the same physics. Copious data on open clusters are used to test the formula ∂ω/∂t ∝ − ωn where n is unrestricted, and thus covers diverse possibilities. Histogram conjugates for each of 15 clusters with 120 to 812 measurements provide n = 1.13 ± 0.19. Results are independent of initial spin rate, bin size, cluster parameters, and star mass. Notably, 11 large clusters with mostly M-types yield fits with n = 1.07 ± 0.12. Associations behave similarly. Only exponential decay (n = 1) explains the similar shapes of the conjugate histograms for the spin period and angular velocity, despite the asymmetric (inverse) relationship of these variables. This rate law is consistent with viscous dissipation. Forward modeling confirms that n is near unity and further shows that coeval formation of all stars in a cluster does not occur. We therefore explore a constant rate of star production, which is reasonable for tiny stars. Inverse models show that episodic production increases with mass, but is unimportant below ~0.55 MSun. We infer star and cluster ages, and find that star production becomes less regular with time, as interstellar gas and dust are progressively depleted. Our new analytical approach of extracting a physical law from conjugate histograms is general and widely applicable.


2016 ◽  
Vol 12 (S328) ◽  
pp. 77-84
Author(s):  
Constance Emeriau-Viard ◽  
Allan Sacha Brun

AbstractDuring the PMS, structure and rotation rate of stars evolve significantly. We wish to assess the consequences of these drastic changes on stellar dynamo, internal magnetic field topology and activity level by mean of HPC simulations with the ASH code. To answer this question, we develop 3D MHD simulations that represent specific stages of stellar evolution along the PMS. We choose five different models characterized by the radius of their radiative zone following an evolutionary track, from 1 Myr to 50 Myr, computed by a 1D stellar evolution code. We introduce a seed magnetic field in the youngest model and then we spread it through all simulations. First of all, we study the consequences that the increase of rotation rate and the change of geometry of the convective zone have on the dynamo field that exists in the convective envelop. The magnetic energy increases, the topology of the magnetic field becomes more complex and the axisymmetric magnetic field becomes less predominant as the star ages. The computation of the fully convective MHD model shows that a strong dynamo develops with a ratio of magnetic to kinetic energy reaching equipartition and even super-equipartition states in the faster rotating cases. Magnetic fields resulting from our MHD simulations possess a mixed poloidal-toroidal topology with no obvious dominant component. We also study the relaxation of the vestige dynamo magnetic field within the radiative core and found that it satisfies stability criteria. Hence it does not experience a global reconfiguration and instead slowly relaxes by retaining its mixed poloidal-toroidal topology.


2016 ◽  
Vol 337 (8-9) ◽  
pp. 810-814 ◽  
Author(s):  
S. A. Barnes ◽  
F. Spada ◽  
J. Weingrill

2015 ◽  
Vol 11 (S320) ◽  
pp. 357-366
Author(s):  
Jason T. Wright ◽  
Brendan P. Miller

AbstractThe magnetic activity levels of planet host stars may differ from that of stars not known to host planets in several ways. Hot Jupiters may induce activity in their hosts through magnetic interactions, or through tidal interactions by affecting their host's rotation or convection. Measurements of photospheric, chromospheric, or coronal activity might then be abnormally high or low compared to control stars that do not host hot Jupiters, or might be modulated at the planet's orbital period. Such detections are complicated by the small amplitude of the expected signal, by the fact that the signals may be transient, and by the difficulty of constructing control samples due to exoplanet detection biases and the uncertainty of field star ages. We review these issues, and discuss avenues for future progress in the field.


2008 ◽  
Vol 4 (S258) ◽  
pp. 345-356
Author(s):  
Sydney A. Barnes

AbstractThe construction of all age indicators consists of certain basic steps which lead to the identification of the properties desirable for stellar age indicators. Prior age indicators for main sequence field stars possess only some of these properties. The measured rotation periods of cool stars are particularly useful in this respect because they have well-defined dependencies that allow stellar ages to be determined with ~20% errors. This method, called gyrochronology, is explained informally in this talk, shown to have the desired properties, compared to prior methods, and used to derive ages for samples of main sequence field stars.


2001 ◽  
Vol 204 ◽  
pp. 467-474 ◽  
Author(s):  
H. S. Stockman ◽  
John C. Mather

The Next Generation Space Telescope (NGST) will be an 8 m deployable telescope, radiatively cooled to 30 K and diffraction-limited at 2 μm, operating at the Sun-Earth Lagrangian point L2. It will be built by a partnership of NASA, ESA, and CSA (Canadian Space Agency). The camera sensitivity should be limited by the zodiacal light for wavelengths < 10 μm. The main scientific objectives are the study of the origin and evolution of galaxies, stars, and planets, beginning with the first luminous objects to form from the Big Bang. Other objectives include studies of dark matter, supernovae, the intergalactic medium, gamma ray bursts, star ages, and exobiology. The telescope will be operated like the Hubble Space Telescope (HST) by the Space Telescope Science Institute, with all observing programs openly solicited and selected by peer review.The NGST scientific requirements originated with the report of the Dressler Committee HST & Beyond. The instruments recommended by the Ad Hoc Science Working Group (ASWG) include 1) a wide field near infrared (NIR) camera with an 8K2 detector array covering 0.6 - 5 μm, 2) a multi-object NIR spectrograph capable of simultaneously observing > 100 objects with a resolution of R (λ/δλ) = 1000, and 3) a combined mid-infrared (MIR) camera and spectrograph from 5-27 μm, with a resolution of R > 1500.


Sign in / Sign up

Export Citation Format

Share Document