layer heating
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6657
Author(s):  
Yu-Chao Yan ◽  
Cheng-Yu Jiang ◽  
Run-Bo Chen ◽  
Bing-He Ma ◽  
Jin-Jun Deng ◽  
...  

Hot film sensors detect the flow shear stress based on the forced convection heat transfer to the fluid. Current hot film sensors have been significantly hindered by the relatively low sensitivity due to the massive heat conduction to the substrate. This paper describes the design, fabrication, simulation, and testing of a novel flow sensor with dual-layer hot film structures. More specifically, the heat conduction was insulated from the sensing heater to the substrate by controlling both sensing and guarding heaters working at the same temperature, resulting in a higher sensitivity. The experiment and simulation results showed that the sensitivity of the dual-layer hot film sensor was significantly improved in comparison to the single-layer sensor. Additionally, the dual-layer sensor was designed and fabricated in an integrated, flexible, and miniaturized manner. Its small size makes it an excellent candidate for flow detection.


2020 ◽  
Vol 29 (9) ◽  
pp. 090703
Author(s):  
Bo Peng ◽  
Zili Kou ◽  
Mengxi Zhao ◽  
Mingli Jiang ◽  
Jiawei Zhang ◽  
...  

2020 ◽  
Vol 18 (3) ◽  
pp. 113
Author(s):  
K.R. Urazakov ◽  
R.V. Usmanov ◽  
N.A. Abdullin
Keyword(s):  

Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 72
Author(s):  
Mike Cullen

A diagnostic method is presented for analysing the large-scale behaviour of the Met Office Unified Model, which is a comprehensive atmospheric model used for weather and climate prediction. Outside the boundary layer, on scales larger than the radius of deformation, semi-geostrophic theory will give an accurate approximation to the model evolution. In particular, the ageostrophic circulation required to maintain geostrophic and hydrostatic balance against prescribed forcing and a rate of change of the geostrophic pressure can be calculated. In the tropics, the balance condition degenerates to the weak temperature gradient approximation. Within the boundary layer, the semi-geotriptic approximation has to be used because friction and rotation are equally important. Assuming the calculated pressure tendency and ageotriptic circulation match the observed model behaviour, the influence of the large-scale state and the nature of the forcing on the model response can be deduced in a straightforward way. The capabilities of the diagnostic are illustrated by comparing predictions of the ageotriptic circulation from the theory and the model. It is then used to show that the effects of latent heat release can be included by modifying the static stability, and to show the effect of an idealised tropical heat source on the subtropical jet. Finally, the response of the ageotriptic flow to boundary layer heating in the tropics is demonstrated. These illustrations show that the model behaviour on large scales conforms with theoretical expectations, so that the results of the diagnostic can be used to aid the development of further improvements to the model, in particular investigating systematic errors and understanding the large-scale atmospheric response to forcing.


Author(s):  
Mike Cullen

A diagnostic method is presented for analysing the large-scale behaviour of the Met Office Unified Model, which is a comprehensive atmospheric model used for weather and climate prediction. Outside the boundary layer, on scales larger than the radius of deformation, semigeostrophic theory will give an accurate approximation to the model evolution. In particular, the ageostrophic circulation required to maintain geostrophic and hydrostatic balance against prescribed forcing and a rate of change of the geostrophic pressure can be calculated. In the tropics the balance condition degenerates to the weak temperature gradient approximation. Within the boundary layer the semigeostriptic approximation has to be used because friction and rotation are equally important. Assuming the calculated pressure tendency and ageotriptic circulation match the observed model behaviour, the influence of the large-scale state and the nature of the forcing on the model response can be deduced in a straightforward way. This process is illustrated by comparing predictions of the ageotriptic circulation from the theory and the model. It is then used to show that the effects of latent heat release can be included by modifying the static stability, and to show the effect of an idealised tropical heat source on the subtropical jet. Finally the response of the ageotriptic flow to boundary layer heating in the tropics is demonstrated. These illustrations show that the model behaviour on large scales conforms with theoretical expectations, so that the results of the diagnostic can be used to aid the development of further improvements to the model.


2016 ◽  
Vol 701 ◽  
pp. 148-153 ◽  
Author(s):  
Maisarah Lutfi ◽  
Farazila Yusof ◽  
Tadashi Ariga ◽  
Ramesh Singh ◽  
Mohd Hamdi Bin Abd Shukor

Microwave hybrid heating (MHH) technique was used to investigate the formation of intermetallic compound layer at Cu-7.0Ni-9.3Sn-6.3P/Cu interface. Two different susceptor materials; graphite and silicon carbide were used to provide initial heating of the filler alloy before it starts couple with the microwaves and melted on the Cu surface. The interface of IMC layer was characterized using Scanning Electron Microscope (SEM), energy dispersive X-ray spectrometry (EDS) and microhardness. Metallurgical study showed the formation of the IMC layer with multiphase at the joint interface for microwave heating of both susceptor materials. The thickness of IMC layer heating in silicon carbide susceptor was three times thinner than heating in graphite susceptor; 16.5 μm and 50.5 μm, respectively. The findings showed that microwave hybrid heating can be used to join Cu-7.0Ni-9.3Sn-6.3P/Cu and controlled the thickness of IMC layer.


Sign in / Sign up

Export Citation Format

Share Document