classical immunoglobulin
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Johannes Schilling ◽  
Christian Jost ◽  
Ioana Mariuca Ilie ◽  
Joachim Schnabl ◽  
Oralea Buechi ◽  
...  

AbstractDesigned Ankyrin Repeat Proteins (DARPins) are a class of antibody mimetics with a high and mostly unexplored potential in drug development. They are clinically validated and thus represent a true alternative to classical immunoglobulin formats. In contrast to immunoglobulins, they are built from solenoid protein domains comprising an N-terminal capping repeat, one or more internal repeats and a C-terminal capping repeat. By using in silico analysis and a rationally guided Ala-Scan, we identified position 17 of the N-terminal capping repeat to play a key role for the overall protein thermostability. The melting temperature of a DARPin domain with a single full-consensus internal repeat was increased by about 8°C to 10°C when the original Asp17 was replaced by Leu, Val, Ile, Met, Ala or Thr, as shown by high-temperature unfolding experiments at equilibrium. We then transferred the Asp17Leu mutation to various backgrounds, including different N- and C-terminal capping repeats and clinically validated DARPin domains, such as the VEGF-binding ankyrin repeat domain of abicipar pegol. In all cases, the proteins remained monomeric and showed improvements in the thermostability of about 8°C to 16°C. Thus, the replacement of Asp17 seems to be generically applicable to this drug class. Molecular dynamics simulations show that the Asp17Leu mutation reduces electrostatic repulsion and improves van-der-Waals packing, rendering the DARPin domain less flexible and more stable. Interestingly, such a beneficial Asp17Leu mutation is present in the N-terminal caps of three of the five DARPin domains of ensovibep, a SARS-CoV-2 entry inhibitor currently in clinical development. This mutation is likely responsible, at least in part, for the very high melting temperature (>90°C) of this promising anti-Covid-19 drug. Overall, such N-terminal capping repeats with increased thermostability seem to be beneficial for the development of innovative drugs based on DARPins.


2020 ◽  
Vol 21 (15) ◽  
pp. 5392 ◽  
Author(s):  
Evgeny A. Ermakov ◽  
Georgy A. Nevinsky ◽  
Valentina N. Buneva

Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.


2019 ◽  
Vol 32 (9) ◽  
pp. 385-399
Author(s):  
Magdalena J Buschhaus ◽  
Stefan Becker ◽  
Andrew J Porter ◽  
Caroline J Barelle

Abstract The adaptive immune system of cartilaginous fish (Elasmobranchii), comprising of classical hetero-tetrameric antibodies, is enhanced through the presence of a naturally occurring homodimeric antibody-like immunoglobulin—the new antigen receptor (IgNAR). The binding site of the IgNAR variable single-domain (VNAR) offers advantages of reduced size (<1/10th of classical immunoglobulin) and extended binding topographies, making it an ideal candidate for accessing cryptic epitopes otherwise intractable to conventional antibodies. These attributes, coupled with high physicochemical stability and amenability to phage display, facilitate the selection of VNAR binders to challenging targets. Here, we explored the unique attributes of these single domains for potential application as bioprocessing reagents in the development of the SEED-Fc platform, designed to generate therapeutic bispecific antibodies. A panel of unique VNARs specific to the SEED homodimeric (monospecific) ‘by-products’ were isolated from a shark semi-synthetic VNAR library via phage display. The lead VNAR candidate exhibited low nanomolar affinity and superior selectivity to SEED homodimer, with functionality being retained upon exposure to extreme physicochemical conditions that mimic their applicability as purification agents. Ultimately, this work exemplifies the robustness of the semi-synthetic VNAR platform, the predisposition of the VNAR paratope to recognise novel epitopes and the potential for routine generation of tailor-made VNAR-based bioprocessing reagents.


1981 ◽  
Vol 153 (5) ◽  
pp. 1068-1079 ◽  
Author(s):  
E Pillemer ◽  
I L Weissman

To identify T lymphocyte antigens with immunoglobulin-like determinants, we prepared rat anti-mouse T cell monoclonal antibodies and screened them against a panel of purified mouse myeloma proteins representing all isotypes of immunoglobulin. One hybridoma, designated 42-21, was found to detect a novel antigenic determinant shared by V kappa-TEPC15 and the Thy-1 molecule on all T lymphocytes. Although several explanations for this unusual phenomenon exist, it may imply some role for the Thy-1 molecule in antigen and/or mitogen recognition. In any event, future studies of idiotypes on T lymphocytes must consider the possibility that anti-idiotypic sera detect cell surface molecules unrelated to classical immunoglobulin.


Sign in / Sign up

Export Citation Format

Share Document