A Stretchable Strain Sensor Based on CNTs/GR for Human Motion Monitoring

NANO ◽  
2022 ◽  
Author(s):  
Delin Chen ◽  
Hongmei Zhao ◽  
Weidong Yang ◽  
Dawei Wang ◽  
Xiaowei Huang ◽  
...  

Flexible/stretchable strain sensors have attracted much attention due to their advantages for human-computer interaction, smart wearable and human monitoring. However, there are still great challenges on gaining super durability, quick response, and wide sensing range. This paper provides a simple process to obtain a sensor which is based on graphene (GR)/carbon nanotubes (CNTs) and Ecoflex hybrid, which demonstrates superb endurance (over 1000 cycles at 100% strain), remarkable sensitivity (strain over 125% sensitivity up to 20) and wide sensing range (175%). All results indicate that it is capable for human movement monitoring, such as finger and knee bending and pulse beat. Most importantly, it can be used as a warning function for the night cyclist’s ride. This research provides the feasibility of using this sensor for practical applications.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2531
Author(s):  
Yelin Ko ◽  
Ji-seon Kim ◽  
Chi Cuong Vu ◽  
Jooyong Kim

Flexible strain sensors are receiving a great deal of interest owing to their prospective applications in monitoring various human activities. Among various efforts to enhance the sensitivity of strain sensors, pre-crack generation has been well explored for elastic polymers but rarely on textile substrates. Herein, a highly sensitive textile-based strain sensor was fabricated via a dip-coat-stretch approach: a polyester woven elastic band was dipped into ink containing single-walled carbon nanotubes coated with silver paste and pre-stretched to generate prebuilt cracks on the surface. Our sensor demonstrated outstanding sensitivity (a gauge factor of up to 3550 within a strain range of 1.5–5%), high stability and durability, and low hysteresis. The high performance of this sensor is attributable to the excellent elasticity and woven structure of the fabric substrate, effectively generating and propagating the prebuilt cracks. The strain sensor integrated into firefighting gloves detected detailed finger angles and cyclic finger motions, demonstrating its capability for subtle human motion monitoring. It is also noteworthy that this novel strategy is a very quick, straightforward, and scalable method of fabricating strain sensors, which is extremely beneficial for practical applications.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 716
Author(s):  
Rong Dong ◽  
Jianbing Xie

In this paper, stretchable strain sensors with a controllable negative resistance sensitivity coefficient are firstly proposed. In order to realize the sensor with a negative resistance sensitivity coefficient, a stretchable stress sensor with sandwich structure is designed in this paper. Carbon nanotubes are added between two layers of silica gel. When the sensor is stretched, carbon nanotubes will be squeezed at the same time, so the sensor will show a resistance sensitivity coefficient that the resistance becomes smaller after stretching. First, nanomaterials are coated on soft elastomer, then a layer of silica gel is wrapped on the outside of the nanomaterials. In this way, similar to sandwich biscuits, a stretchable strain sensor with controllable negative resistance sensitivity coefficient has been obtained. Because the carbon nanotubes are wrapped between two layers of silica gel, when the silica gel is stretched, the carbon nanotubes will be squeezed longitudinally, which increases their density and resistance. Thus, a stretchable strain sensor with negative resistance sensitivity coefficient can be realized, and the resistivity can be controlled and adjusted from 12.7 Ω·m to 403.2 Ω·m. The sensor can be used for various tensile testing such as human motion monitoring, which can effectively expand the application range of conventional tensile strain sensor.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 951
Author(s):  
Sung-Yeob Jeong ◽  
Jun-Uk Lee ◽  
Sung-Moo Hong ◽  
Chan-Woo Lee ◽  
Sung-Hwan Hwang ◽  
...  

Bio-compatible strain sensors based on elastomeric conductive polymer composites play pivotal roles in human monitoring devices. However, fabricating highly sensitive and skin-like (flexible and stretchable) strain sensors with broad working range is still an enormous challenge. Herein, we report on a novel fabrication technology for building elastomeric conductive skin-like composite by mixing polymer solutions. Our e-skin substrates were fabricated according to the weight of polydimethylsiloxane (PDMS) and photosensitive polyimide (PSPI) solutions, which could control substrate color. An e-skin and 3-D flexible strain sensor was developed with the formation of laser induced graphene (LIG) on the skin-like substrates. For a one-step process, Laser direct writing (LDW) was employed to construct superior durable LIG/PDMS/PSPI composites with a closed-pore porous structure. Graphene sheets of LIG coated on the closed-porous structure constitute a deformable conductive path. The LIG integrated with the closed-porous structure intensifies the deformation of the conductive network when tensile strain is applied, which enhances the sensitivity. Our sensor can efficiently monitor not only energetic human motions but also subtle oscillation and physiological signals for intelligent sound sensing. The skin-like strain sensor showed a perfect combination of ultrawide sensing range (120% strain), large sensitivity (gauge factor of ~380), short response time (90 ms) and recovery time (140 ms), as well as superior stability. Our sensor has great potential for innovative applications in wearable health-monitoring devices, robot tactile systems, and human–machine interface systems.


RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 79114-79120 ◽  
Author(s):  
Yichun Ding ◽  
Jack Yang ◽  
Charles R. Tolle ◽  
Zhengtao Zhu

A highly stretchable and sensitive strain sensor assembled by embedding a free-standing electrospun carbon nanofibers (CNFs) mat in a polyurethane (PU) matrix shows a fast, stable, and reproducible response to strain up to 300%.


2017 ◽  
Vol 9 (2) ◽  
pp. 1770-1780 ◽  
Author(s):  
Dong Yun Choi ◽  
Min Hyeong Kim ◽  
Yong Suk Oh ◽  
Soo-Ho Jung ◽  
Jae Hee Jung ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 9405-9414 ◽  
Author(s):  
Jin Wu ◽  
Zixuan Wu ◽  
Xing Lu ◽  
Songjia Han ◽  
Bo-Ru Yang ◽  
...  

2019 ◽  
Vol 6 (11) ◽  
pp. 3119-3124 ◽  
Author(s):  
Runfei Wang ◽  
Wei Xu ◽  
Wenfeng Shen ◽  
Xiaoqing Shi ◽  
Jian Huang ◽  
...  

Transparent film strain sensors based on silver nanowires and thermoplastic polyurethane are promising candidates for detecting various human motions and monitoring the mass of some kinetic objects.


Sign in / Sign up

Export Citation Format

Share Document